Options
Molinari, Irene
Loading...
Preferred name
Molinari, Irene
Staff
staff
ORCID
Researcher ID
AAE-7204-2019
47 results
Now showing 1 - 10 of 47
- PublicationOpen AccessRayleigh wave attenuation and phase velocity maps of the greater Alpine region from ambient noise(2024-11-25)
;Roisenberg, Henrique Berger; ; ; ; ;Dipartimento di Scienze, Università degli Studi Roma Tre, Rome, Italy ;Research School of Earth Sciences, The Australian National University, Canberra, Australia.; ;Dipartimento di Geoscienze, Università degli Studi di Padova, Padua, ItalyDipartimento di Scienze, Università degli Studi Roma Tre, Rome, ItalyWe use seismic ambient noise data from 724 publicly available broadband seismic stations across central Europe to create detailed phase velocity and attenuation maps of Rayleigh waves, focusing on short periods down to 3 s. We interpret these maps in terms of the underlying physical processes relevant to the nature of continental crust. Through a regionalized interpretation based on tectonic settings, we highlight the significant role of fluid-filled fractures in the attenuation of surface waves. Our findings indicate a close connection between the time elapsed since the last tectonic activity in the European crust and the attenuation coefficient values. Additionally, we observe a pronounced decrease in attenuation coefficient values at periods below 6 s. The anti-correlation between attenuation coefficient and phase velocity in recently active tectonic regions suggests that fluid-filled fractures are likely the dominant factor governing seismic attenuation in the European crust. - PublicationOpen AccessPreface(2024-10-30)
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;; ; ;; ; ; ; ; With this volume, Annals of Geophysics proudly presents a special issue dedicated to celebrating the anniversary of Istituto Nazionale di Geofisica e Vulcanologia (INGV) for its "25 years of geosciences for society". This collection of scientific articles is authored by dedicated researchers whose active participation and collaboration have brought prestige to both INGV and our journal. Although the list of authors is not exhaustive among the numerous past and present INGV collaborators, it offers an exciting and insightful journey through the fields of seismology, volcanology, and environmental science. This volume is divided into three parts: the first is dedicated to topics more closely related to seismology, the second to volcanology, and the last part is focused on environmental issues, including both review articles and articles addressing specific problems. There are contributions dedicated to the study of tsunamis and multi-hazard analyses, as well as articles on the history of globally significant infrastructure and sections focused on the most widely used seismological models. - PublicationOpen AccessCharacterizing the Sardinia candidate site for the Einstein Telescope(2024-01-22)
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;; ; ; ; ; ; ;; ; ; ; ; ; ; ;; ; ; ; ;Due to its unique geophysical features and to the low density population of the area, Sos Enattos is a promising candidate site to host the Einstein Telescope (ET), the third-generation Gravitational Wave Observatory. The geophysical characterization of the Sos Enattos former mine, close to one of the proposed ET corners, started in 2010 with the deployment of seismic and environmental sensors underground. Since 2019 a new extensive array of seismometers, magnetometers and acoustic sensors have been installed in three stations along the underground tunnels, with one additional station at the surface. Beside a new geological survey over a wider area, two boreholes about 270 m deep each were excavated at the other two corners, determining the good quality of the drilled granite and orthogneiss rocks and the absence of significant thoroughgoing fault zones. These boreholes are instrumented with broadband seismometers that revealed an outstanding low level of vibrational noise in the low-frequency band of ET-LF (2-10Hz), significantly lower than the Peterson's NLNM and resulting among the quietest seismic stations in the world in that frequency band. The low seismic background and the reduced number of seismic glitches ensure that just a moderated Newtonian noise subtraction would be needed to achieve the ET target sensitivity. Geoelectrical and active seismic campaigns have been carried out to reveal the features of the subsurface, revealing the presence of small-sized fractured areas with limited water circulation. Finally, temporary arrays of seismometers, magnetometers and acoustic sensors are deployed in the area to study the local sources of environmental noise.226 8 - PublicationOpen AccessSeismic source mapping by surface wave time reversal: application to the great 2004 Sumatra earthquake(2023-05)
; ; ; ; ; Different approaches to map seismic rupture in space and time often lead to incoherent results for the same event. Building on earlier work by our team, we ‘time-reverse’ and ‘backpropagate’ seismic surface wave recordings to study the focusing of the time-reversed field at the seismic source. Currently used source-imaging methods relying on seismic recordings neglect the information carried by surface waves, and mostly focus on the P-wave arrival alone. Our new method combines seismic time reversal approach with a surface wave ray-tracing algorithm based on a generalized spherical-harmonic parametrization of surface wave phase velocity, accounting for azimuthal anisotropy. It is applied to surface wave signal filtered within narrow-frequency bands, so that the inherently 3-D problem of simulating surface wave propagation is separated into a suite of 2-D problems, each of relatively limited computational cost. We validate our method through a number of synthetic tests, then apply it to the great 2004 Sumatra–Andaman earthquake, characterized by the extremely large extent of the ruptured fault. Many studies have estimated its rupture characteristics from seismological data (e.g. Lomax, Ni et al., Guilbert et al., Ishii et al., Krüger & Ohrnberger, Jaffe et al.) and geodetic data (e.g. Banerjee et al., Catherine et al., Vigny et al., Hashimoto et al., Bletery et al.). Applying our technique to recordings from only 89 stations of the Global Seismographic Network (GSN) and bandpass filtering the corresponding surface wave signal around 80-to-120, 50-to-110 and 40-to-90 s, we reproduce the findings of earlier studies, including in particular the northward direction of rupture propagation, its approximate spatial extent and duration, and the locations of the areas where most energy appears to be released.164 72 - PublicationOpen AccessJoint Inversion of Geodetic and Strong Motion Data for the 2012, Mw 6.1–6.0, May 20th and May 29th, Northern Italy Earthquakes: Source Models and Seismotectonic Interpretation(2023-04)
; ; ; ; ; ; ; ; ; Abstract We present the first rupture models of the two mainshocks of the 2012 northern Italy sequence, determined by jointly inverting seismic and geodetic data. We aim at providing new insights into the mainshocks for which contrasting seismotectonic interpretations are proposed in literature. Sources' geometric parameters were constrained by seismic reflection profiles, 3-D relocations and focal mechanisms of mainshocks/aftershocks. Site-specific velocity profiles were used to model accelerograms affected by strong propagation effects related to the Po basin. Our source models differ significantly from previous ones relying on either seismic or geodetic data. Their comparison against geological sections and aftershock distribution provides new insights about the ruptured thrust faults. The May 20th Mw6.1 mainshock activated the Middle Ferrara thrust-ramp dipping ∼45° SSW-wards, breaking a main eastern slip patch 4–15 km deep in Mesozoic carbonates (maximum slip 0.7–0.8 m) and Paleozoic-Triassic basement rocks, and a small western patch in the basement. The May 29th Mw6.0 mainshock featured two separated asperities along the Mirandola thrustramp dipping ∼42° S-wards: an eastern asperity 4–15 km deep in Mesozoic carbonates and basement rocks (maximum slip 0.7 m) and a deeper western one (7–16 km depth) mainly in the basement (slip peak 0.8 m). On-fault aftershocks were concentrated within the basement and Mesozoic carbonates, devoiding highslip zones. Slip and aftershock distribution was controlled by the rheological transition between Mesozoic carbonates and Cenozoic sediments. Unlike previous thin-skinned tectonic interpretations, our results point to a complex rupture process along moderately dipping (40°–45°) thrust-ramps deeply rooted into the Paleozoic crystalline basement. Plain Language Summary The two M6 mainshocks of the 2012 Italy sequence are the strongest earthquakes ever observed in the Po Plain, a strategic region for the Italian economy. The mainshocks ruptured blind thrust-faults, however their source models and seismotectonic interpretation are still debated because the thrust-system architecture is controversial. Contrasting thick-skinned and thin-skinned tectonic models are proposed. In thick-skinned interpretations, shortening is accommodated by thrust-ramps rooted into the crystalline basement that represent main seismogenic structures, whereas in thin-skinned interpretations, shortening and seismicity are controlled by listric faults splaying out from dècollement levels in the sedimentary crust. A comprehensive analysis of the mainshocks' source represents an opportunity to provide new insights into the seismogenesis in northern Italy and on a broader scale into seismotectonics of thrust-and-fold belts. We get a complete picture of the mainshocks kinematics by jointly inverting, for the first time, seismic and geodetic data, and unravel rupture heterogeneities not resolved by previous studies. By integrating source models with aftershock locations and geological models, we propose a comprehensive seismotectonic interpretation of the sequence. We conclusively identify the ruptured faults that correspond to thrust-ramps rooted into the crystalline basement and evidence the key role played by lithological changes in the rupture process.95 18 - PublicationOpen AccessSeismic anisotropy across Adria plate, from the Apennines to the Dinarides(2022-08-25)
; ; ; ; ; ; ; ; ; ; ;The Adria microplate has the particular feature to be involved in two subduction systems with slab dipping in opposite directions, one toward west beneath the Apennines and the other to the east beneath the Dinarides. The deep structure of Adria and the shape and characteristics of the slabs have mainly been studied through seismic tomography. However, the uncertainty about the presence and dimensions of tear and windows along the Apennines and the Dinarides slabs is still large. An instrument that can be used to draw mantle flows and to support the possible presence of slab windows or tears is the detection of seismic anisotropy, in particular core phases shear wave splitting. In this paper, to give more light to the structure of Adria slabs and possible mantle circulation beneath this microplate, we benefit from data recorded by seismic stations located along a profile running across the central Adriatic from the Apennines to the edge of the Panonnian basin. The new measurements, together with previous findings, show an evident change of the anisotropic properties when moving along the profile. The distribution of SKS-splitting measurements in the Apennines strongly agree with previous measurements that already described the toroidal flow generated by the slab rollback of the Calabrian arc. In addition, the N-S and NE-SW directions found beneath the Apulia are in agreement with those attributed previously in the outer northern Apennines, to a proper typical pattern of the mantle beneath Adria, which is undeformed by the slab retreat. The pattern of the anisotropy in the Dinarides region shows lateral and vertical variations that together with recent tomographic images that better define the slab window allow us to speculate as follows: the new SKS measurements, interpreted in terms of mantle deformation and flows, agree with the geodynamic model that justifies the mantle circulation beneath Adria with the presence of slab windows in both the Apennines and Dinarides slabs.236 22 - PublicationOpen AccessThe AlpArray Research Seismicity-Catalogue(2022-06)
; ; ; ; ; ;AlpArray Working Group; ; ; ; ; We take advantage of the new large AlpArray Seismic Network (AASN) as part of the AlpArray research initiative (www.alparray.ethz.ch), to establish a consistent seismicity-catalogue for the greater Alpine region (GAR) for the time period 2016 January 1–2019 December 31. We use data from 1103 stations including the AASN backbone composed of 352 permanent and 276 (including 30 OBS) temporary broad-band stations (network code Z3). Although characterized by a moderate seismic hazard, the European Alps and surrounding regions have a higher seismic risk due to the higher concentration of values and people. For these reasons, the GAR seismicity is monitored and routinely reported in catalogues by a 11 national and 2 regional seismic observatories. The heterogeneity of these data set limits the possibility of extracting consistent information by simply merging to investigate the GAR's seismicity as a whole. The uniformly spaced and dense AASN provides, for the first time, a unique opportunity to calculate high-precision hypocentre locations and consistent magnitude estimation with uniformity and equal uncertainty across the GAR. We present a new, multistep, semi-automatic method to process ∼50 TB of seismic signals, combining three different software. We used the SeisComP3 for the initial earthquake detection, a newly developed Python library ADAPT for high-quality re-picking, and the well-established VELEST algorithm both for filtering and final location purposes. Moreover, we computed new local magnitudes based on the final high-precision hypocentre locations and re-evaluation of the amplitude observations. The final catalogue contains 3293 seismic events and is complete down to local magnitude 2.4 and regionally consistent with the magnitude 3+ of national catalogues for the same time period. Despite covering only 4 yr of seismicity, our catalogue evidences the main fault systems and orogens’ front in the region, that are documented as seismically active by the EPOS-EMSC manually revised regional bulletin for the same time period. Additionally, we jointly inverted for a new regional minimum 1-D P-wave velocity model for the GAR and station delays for both permanent station networks and temporary arrays. These results provide the base for a future re-evaluation of the past decades of seismicity, and for the future seismicity, eventually improving seismic-hazard studies in the region. Moreover, we provide a unique, consistent seismic data set fundamental to further investigate this complex and seismically active area. The catalogue, the minimum 1-D P-wave velocity model, and station delays associated are openly shared and distributed with a permanent DOI listed in the data availability section.175 97 - PublicationOpen AccessSlab Geometry and Upper Mantle Flow Patterns in the Central Mediterranean From 3D Anisotropic P-Wave Tomography(2022-05)
; ; ; ; ; ; ; ; ; We present the first three-dimensional (3D) anisotropic teleseismic P-wave tomography model of the upper mantle covering the entire Central Mediterranean. Compared to isotropic tomography, it is found that including the magnitude, azimuth, and, importantly, dip of seismic anisotropy in our inversions simplifies isotropic heterogeneity by reducing the magnitude of slow anomalies while yielding anisotropy patterns that are consistent with regional tectonics. The isotropic component of our preferred tomography model is dominated by numerous fast anomalies associated with retreating, stagnant, and detached slab segments. In contrast, relatively slower mantle structure is related to slab windows and the opening of back-arc basins. To better understand the complexities in slab geometry and their relationship to surface geological phenomenon, we present a 3D reconstruction of the main Central Mediterranean slabs down to 700 km based on our anisotropic model. P-wave seismic anisotropy is widespread in the Central Mediterranean upper mantle and is strongest at 200-300 km depth. The anisotropy patterns are interpreted as the result of asthenospheric material flowing primarily horizontally around the main slabs in response to pressure exerted by their mid-to-late Cenezoic horizontal motion, while sub-vertical anisotropy possibly reflects asthenospheric entrainment by descending lithosphere. Our results highlight the importance of anisotropic P-wave imaging for better constraining regional upper mantle geodynamics.183 68 - PublicationOpen AccessCoordinated and Interoperable Seismological Data and Product Services in Europe: the EPOS Thematic Core Service for Seismology(2022-04-29)
; ; ; ; ; ; ; ; ; ; ; ; ; ;; ; ; ; ; ; ;; ; ; ;In this article we describe EPOS Seismology, the Thematic Core Service consortium for the seismology domain within the European Plate Observing System infrastructure. EPOS Seismology was developed alongside the build-up of EPOS during the last decade, in close collaboration between the existing pan-European seismological initiatives ORFEUS (Observatories and Research Facilities for European Seismology), EMSC (Euro-Mediterranean Seismological Center) and EFEHR (European Facilities for Earthquake Hazard and Risk) and their respective communities. It provides on one hand a governance framework that allows a well-coordinated interaction of the seismological community services with EPOS and its bodies, and on the other hand it strengthens the coordination among the already existing seismological initiatives with regard to data, products and service provisioning and further development. Within the EPOS Delivery Framework, ORFEUS, EMSC and EFEHR provide a wide range of services that allow open access to a vast amount of seismological data and products, following and implementing the FAIR principles and supporting open science. Services include access to raw seismic waveforms of thousands of stations together with relevant station and data quality information, parametric earthquake information of recent and historical earthquakes together with advanced event-specific products like moment tensors or source models and further ancillary services, and comprehensive seismic hazard and risk information, covering latest European scale models and their underlying data. The services continue to be available on the well-established domain-specific platforms and websites, and are also consecutively integrated with the interoperable central EPOS data infrastructure. EPOS Seismology and its participating organizations provide a consistent framework for the future development of these services and their operation as EPOS services, closely coordinated also with other international seismological initiatives, and is well set to represent the European seismological research infrastructures and their stakeholders within EPOS.577 12 - PublicationOpen AccessAzimuthal anisotropy from Eikonal Tomography: example from ambient-noise measurements in the AlpArray network(2022)
; ; ; ; ;AlpArray Working Group; ; ; ; Ambient-noise records from the AlpArray network are used to measure Rayleigh wave phase velocities between more than 150,000 station pairs. From these, azimuthally anisotropic phase-velocity maps are obtained by applying the Eikonal tomography method. Several synthetic tests are shown to study the bias in the Ψ2 anisotropy. There are two main groups of bias, the first one caused by interference between refracted/reflected waves and the appearance of secondary wavefronts that affect the phase travel-time measurements. This bias can be reduced if the amplitude field can be estimated correctly. Another source of error is related to the incomplete reconstruction of the travel-time field that is only sparsely sampled due to the receiver locations. Both types of bias scale with the magnitude of the velocity heterogeneities. Most affected by the spurious Ψ2 anisotropy are areas inside and at the border of low-velocity zones. In the isotropic velocity distribution, most of the bias cancels out if the azimuthal coverage is good. Despite the lack of resolution in many parts of the surveyed area, we identify a number of anisotropic structures that are robust: in the central Alps, we find a layered anisotropic structure, arc-parallel at midcrustal depths and arc-perpendicular in the lower crust. In contrast, in the eastern Alps, the pattern is more consistently E-W oriented which we relate to the eastward extrusion. The northern Alpine forleand exhibits a preferential anisotropic orientation that is similar to SKS observations in the lowermost crust and uppermost mantle.338 92