Options
Romano, Vincenzo
Loading...
Preferred name
Romano, Vincenzo
Email
vincenzo.romano@ingv.it
Staff
staff
ORCID
Scopus Author ID
7103151067
85 results
Now showing 1 - 10 of 85
- PublicationOpen AccessSpace Weather Impact on Radio Communication and NavigationIt is well known that space weather can cause significant disruptions to modern communications and navigation systems, leading to increased safety risks, economic losses, and reduced quality of life. Operators of critical infrastructures (both national and international) are also increasingly aware that extreme space-weather events can have severe impacts on their systems. For example, strong ionospheric disturbances can degrade, and sometimes deny access to satellite positioning, navigation, and timing services, central to the operation of many infrastructures. The mitigation of the effects of space weather on technical systems on the ground and in space, and the development of possible protective measures, are therefore of essential importance. We discuss how space weather drives a wide variety of ionospheric phenomena that can disrupt communications and navigation systems and how scientific understanding can help us to mitigate those effects. We also provide recommendations on further research and collaboration with industrial and governmental partners, which are essential for the development and operation of space weather services.
57 103 - PublicationOpen AccessThe effects of the May 2024 Mother’s Day superstorm over the Mediterranean sector: from data to public communication(2024)
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; On 8 May 2024, the solar active region AR13664 started releasing a series of intense solar flares. Those of class X released between 9 and 11 May 2024 gave rise to a chain of fast Coronal Mass Ejections (CMEs) that proved to be geoeffective. The Storm Sudden Commencement (SSC) of the resulting geomagnetic storm was registered on 10 May 2024 and it is, to date, the strongest event since November 2003. The May 2024 storm, named hereafter Mother’s Day storm, peaked with a Dst of –412 nT and stands out as a “standard candle” storm affecting modern era technologies prone to Space Weather threats. Moreover, the recovery phase exhibited almost no substorm signatures, making the Mother’s Day storm as a perfect storm example. Despite the plethora of notable near Earth environment modifications that are still under investigation, in this paper we concentrate on the Space Weather effects over the Mediterranean sector, with a focus on Italy. In fact, the Istituto Nazionale di Geofisica e Vulcanologia (INGV) manages a dense network of GNSS receivers (including scintillation receivers), ionosondes and magnetometers in the Mediterranean area, which facilitated for a detailed characterization of the modifications induced by the storm. Concerning the geomagnetic field, observatories located in Italy recorded a SSC with a rise time of only 3 minutes and a maximum variation of around 600 nT. The most notable ionospheric effect following the arrival of the disturbance was a significant decrease in plasma density on 11 May, resulting in a pronounced negative ionospheric storm registered on both the critical F2-layer frequency (foF2) and the Total Electron Content (TEC). Another negative effect was recorded on 13 May, while no signatures of composition changes and, specifically, to a decrease of the [O]/[N ] ratio. The IRI UP IONORING 2 data-assimilation procedure, recently developed to nowcast foF2 over Italy, proved to be quite reliable during this extreme event, being characterised just by an overestimation during the main phase of the storm, when the electron density and the height of the F region decreased and increased, respectively. Relevant outcomes of the work relate to the Rate Of TEC change Index (ROTI), which shows unusually high spatially distributed values on the nights of 10 and 11 May. The ROTI enhancements on 10 May might be linked to Stable Auroral Red (SAR) arcs and an equatorward displacement of the main ionospheric trough. Instead, the ROTI enhancements on 11 May might be triggered by a joint action of low-latitude plasma pushed poleward by the pre-reversal enhancement (PRE) in the post-sunset hours and wave-like perturbations propagating from the North. Furthermore, the storm generated immediate attention of the general public to Space Weather effects, including mid-latitude visible phenomena like SAR arcs. This paper outlines the report of the Space Weather Monitoring Group (SWMG) of the INGV Environment Department and its effort to disseminate information about this exceptional event.104 69 - PublicationOpen AccessSpace Weather Effects Observed in the Northern Hemisphere during November 2021 Geomagnetic Storm: The Impacts on Plasmasphere, Ionosphere and Thermosphere Systems(2022-11-15)
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;; ; ; ;; ; ; ; ; ;; ; On 3 November 2021, an interplanetary coronal mass ejection impacted the Earth’s magnetosphere leading to a relevant geomagnetic storm (Kp = 8-), the most intense event that occurred so far during the rising phase of solar cycle 25. This work presents the state of the solar wind before and during the geomagnetic storm, as well as the response of the plasmasphere–ionosphere–thermosphere system in the European sector. To investigate the longitudinal differences, the ionosphere–thermosphere response of the American sector was also analyzed. The plasmasphere dynamics was investigated through field line resonances detected at the European quasi-Meridional Magnetometer Array, while the ionosphere was investigated through the combined use of ionospheric parameters (mainly the critical frequency of the F2 layer, foF2) from ionosondes and Total Electron Content (TEC) obtained from Global Navigation Satellite System receivers at four locations in the European sector, and at three locations in the American one. An original method was used to retrieve aeronomic parameters from observed electron concentration in the ionospheric F region. During the analyzed interval, the plasmasphere, originally in a state of saturation, was eroded up to two Earth’s radii, and only partially recovered after the main phase of the storm. The possible formation of a drainage plume is also observed. We observed variations in the ionospheric parameters with negative and positive phase and reported longitudinal and latitudinal dependence of storm features in the European sector. The relative behavior between foF2 and TEC data is also discussed in order to speculate about the possible role of the topside ionosphere and plasmasphere response at the investigated European site. The American sector analysis revealed negative storm signatures in electron concentration at the F2 region. Neutral composition and temperature changes are shown to be the main reason for the observed decrease of electron concentration in the American sector.661 72 - PublicationOpen AccessA measure of ionospheric irregularities: zonal velocity and its implications for L-band scintillation at low-latitudes(2021-10-22)
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;; ; We estimate the zonal drift velocity of small-scale ionospheric irregularities at low latitude by leveraging the spaced-receivers technique applied to two GNSS receivers for scintillation monitoring installed along the magnetic parallel passing in Presidente Prudente (Brazil, magnetic latitude 12.8°S). The investigated ionospheric sector is ideal to study small-scale irregularities, being located close to the expected position of the southern crest of the equatorial ionospheric anomaly. The measurement campaign took place between September 2013 and February 2014, i.e. equinox and summer solstice seasons under solar maximum, during which the probability of formation of small-scale irregularities is expected to maximize. We found that the hourly average of the velocity increases up to 135 m/s right after the local sunset at ionospheric altitudes and then smoothly decreases in the next hours. Such measurements are in agreement with independent estimations of the velocity made by the Incoherent Scatter Radar located at the Jicamarca Radio Observatory (magnetic latitude 0.1°N), by the Boa Vista Ionosonde (magnetic latitude 12.0°N), and by applying a recently-developed empirical regional short-term forecasting model. Additionally, we investigated the relationship with the percentage occurrence of amplitude scintillation; we report that it is exponentially dependent on the zonal velocity of the irregularities that cause it.670 113 - PublicationOpen AccessSpace Weather Services for Civil Aviation—Challenges and Solutions(2021)
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;; ; ; ; ; ; ; ; ; ; ; ; ; ;; ; ;; ; ; ; ; ; ; ; ; ; ; ;This paper presents a review on the PECASUS service, which provides advisories on enhanced space weather activity for civil aviation. The advisories are tailored according to the Standards and Recommended Practices of the International Civil Aviation Organization (ICAO). Advisories are disseminated in three impact areas: radiation levels at flight altitudes, GNSS-based navigation and positioning, and HF communication. The review, which is based on the experiences of the authors from two years of running pilot ICAO services, describes empiricalmodels behind PECASUS products and lists groundand space-based sensors, providing inputs for themodels and 24/7manualmonitoring activities. As a concrete example of PECASUS performance, its products for a post-stormionospheric F2-layer depression event are analyzed in more detail. As PECASUS models are particularly tailored to describe F2-layer thinning, they reproduce observationsmore accurately than the International Reference Ionospheremodel (IRI(STORM)), but, on the other hand, it is recognized that the service performance ismuch affected by the coverage of its input data. Therefore, more efforts will be directed toward systematic measuring of the availability, timeliness and quality of the data provision in the next steps of the service development.411 67 - PublicationOpen AccessAdaptive Phase Detrending for GNSS Scintillation Detection: A Case Study Over Antarctica(2021)
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; We aim at contributing to the reliability of the phase scintillation index on Global Navigation Satellite System (GNSS) signals at high-latitude. To the scope, we leverage on a recently introduced detrending scheme based on the signal decomposition provided by the fast iterative filtering (FIF) technique. This detrending scheme has been demonstrated to enable a fine-tuning of the cutoff frequency for phase detrending used in the phase scintillation index definition. In a single case study based on Galileo data taken by a GNSS ionospheric scintillation monitor receiver (ISMR) in Concordia Station (Antarctica), we investigate how to step ahead of the cutoff frequency optimization. We show how the FIF-based detrending allows deriving adaptive cutoff frequencies, whose value changes minute-by-minute. They are found to range between 0.4 and 1.2 Hz. This allows better accounting for diffractive effects in phase scintillation index calculation and provides a GNSS-based estimation of the relative velocity between satellite and ionospheric irregularities.812 81 - PublicationOpen AccessDisentangling ionospheric refraction and diffraction effects in GNSS raw phase through fast iterative filtering technique(2020-06-29)
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; We contribute to the debate on the identification of phase scintillation induced by the ionosphere on the Global Navigation Satellite System (GNSS) by introducing a phase detrending method able to provide realistic values of the phase scintillation index at high latitude. It is based on the Fast Iterative Filtering (FIF) signal decomposition technique, which is a recently developed fast implementation of the well-established Adaptive Local Iterative Filtering (ALIF) algorithm. FIF has been conceived to decompose nonstationary signals efficiently and providing a discrete set of oscillating functions, each of them having its frequency. It overcomes most of the problems that arise when using traditional time-frequency analysis techniques and relies on a consolidated mathematical basis since its a priori convergence and stability have been proved. By relying on the capability of FIF to efficiently identify the frequencies embedded in the GNSS raw phase, we define a method based on the FIF-derived spectral features to identify the proper cutoff frequency for phase detrending. To test such a method, we analyze the data acquired from GPS and Galileo signals over Antarctica during the September 2017 storm by the Ionospheric Scintillation Monitor Receiver (ISMR) located in Concordia Station (75.10°S, 123.33°E). Different cases of diffraction and refraction effects are provided, showing the capability of the method in deriving a more accurate determination of the SigmaPhi index. We found values of cutoff frequency in the range of 0.73 to 0.83 Hz, providing further evidence of the inadequacy of the choice of 0.1 Hz, which is often used when dealing with ionospheric scintillation monitoring at high latitudes.1164 74 - PublicationOpen AccessCurrent state and perspectives of Space Weather science in Italy(2020-02-28)
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; Italian teams have been involved many times in Space Weather observational campaigns from space and from the ground, contributing in the advancing of our knowledge on the properties and evolution of the related phenomena. Numerous Space Weather forecasting and now-casting modeling efforts have resulted in a remarkable add-on to the overall progress in the field, at both national and international level. The Italian Space Agency has participated several times in space missions with science objectives related to Space Weather; indeed, an important field for the Italian scientific and industrial communities interested in Heliophysics and Space Weather, is the development of new instrumentation for future space missions. In this paper, we present a brief state-of-the-art in Space Weather science in Italy and we discuss some ideas on a long-term plan for the support of future scientific research in the related disciplines. In the context of the current roadmap, the Italian Space Agency aims to assess the possibility to develop a national scientific Space Weather data centre to encourage synergies between different science teams with interest in the field and to motivate innovation and new mission concept development. Alongside with the proposed recommendations, we also discuss how the Italian expertise could complement international efforts in a wider international Space Weather context.409 51 - PublicationOpen AccessNeural network based model for global Total Electron Content forecasting(2020)
; ; ; ; ; ; ; ; ; ; ; ; ; We introduce a novel empirical model to forecast, 24 h in advance, the Total Electron Content (TEC) at global scale. The technique leverages on the Global Ionospheric Map (GIM), provided by the International GNSS Service (IGS), and applies a nonlinear autoregressive neural network with external input (NARX) to selected GIM grid points for the 24 h single-point TEC forecasting, taking into account the actual and forecasted geomagnetic conditions. To extend the forecasting at a global scale, the technique makes use of the NeQuick2 Model fed by an effective sunspot number R12 (R12eff), estimated by minimizing the root mean square error (RMSE) between NARX output and NeQuick2 applied at the same GIM grid points. The novel approach is able to reproduce the features of the ionosphere especially during disturbed periods. The performance of the forecasting approach is extensively tested under different geospatial conditions, against both TEC maps products by UPC (Universitat Politècnica de Catalunya) and independent TEC data from Jason-3 spacecraft. The testing results are very satisfactory in terms of RMSE, as it has been found to range between 3 and 5 TECu. RMSE depend on the latitude sectors, time of the day, geomagnetic conditions, and provide a statistical estimation of the accuracy of the 24-h forecasting technique even over the oceans. The validation of the forecasting during five geomagnetic storms reveals that the model performance is not deteriorated during disturbed periods. This 24-h empirical approach is currently implemented on the Ionosphere Prediction Service (IPS), a prototype platform to support different classes of GNSS users.525 60 - PublicationOpen AccessThe ionospheric irregularities climatology over Svalbard from solar cycle 23(2019-06-25)
; ; ; ; ; ; ; ; ; ; ; The paper presents an unprecedented description of the climatology of ionospheric irregularities over the Arctic derived from the longest Global Navigation Satellite Systems data series ever collected for this specific aim. Two TEC and scintillation receivers are working at Ny-Ålesund (Svalbard, NO), the first of which has been installed in late September 2003. They sample the L1 and L2 signals at 50 Hz from all the GPS satellites in view. The receivers monitor an area of about 600 km radius that includes the auroral and cusp/cap regions in the European longitudinal sector. The length of the data series and the privileged site of observation allow describing the Arctic ionosphere along about two solar cycles, from the descending phase of cycle 23 to almost the end of cycle 24. Our analysis results into a detailed assessment of the long-term behaviour of the ionosphere under solar maximum and solar minimum conditions, including several periods of perturbed ionospheric weather caused by unfavourable helio-geophysical conditions. Since November 2015, a multi-constellation GNSS receiver has been deployed in Ny-Ålesund, providing the opportunity to perform the ionospheric climatology from Galileo signals. The results offer realistic features of the high latitude ionosphere that can substantially contribute to the necessary improvements of forecasting models, providing a broad spectrum of ionospheric reactions to different space weather conditions.1229 28