Options
Sposito, Fabio
Loading...
Preferred name
Sposito, Fabio
ORCID
4 results
Now showing 1 - 4 of 4
- PublicationEmbargoCrustal uplift rates implied by synchronously investigating Late Quaternary marine terraces in the Milazzo Peninsula, Northeast Sicily, Italy(Wiley, 2024-07)
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; Late Quaternary crustal uplift is well recognized in northeast Sicily, southern Italy, a region also prone to damaging earthquakes such as the 1908 “Messina” earthquake (Mw 7.1), the deadliest seismic event reported within the Italian Earthquake Catalogue. Yet it is still understudied if, within the Milazzo Peninsula, crustal uplift rates are varying spatially and temporally and whether they may be either influenced by (i) local upper-plate faulting activity or (ii) deep geodynamic processes. To investigate the long-term crustal vertical movements in northeast Sicily, we have mapped a flight of Middle-Late Pleistocene marine terraces within the Milazzo Peninsula and in its southern area and refined their chronology, using a synchronous correlation approach driven by published age controls. This has allowed a new calculation of the associated crustal uplift rates, along a north–south oriented coastal-parallel transect within the investigated area. Our results show a decreasing uplift rate from south to north across the Milazzo Peninsula and beyond, and that the associated rates of uplift have been constant through the Late Quaternary. This spatially varying yet temporally constant vertical deformation helps to constrain the amount of uplift, allowing us to explore which is the driving mechanism(s), proposing a few related scenarios. We discuss our results in terms of tectonic implications and emphasize the importance of using appropriate approaches, as such applying a synchronous correlation method, to refine chronologies of undated palaeoshorelines when used for tectonic investigations.48 112 - PublicationRestrictedBoron and lithium behaviour in river waters under semiarid climatic conditions(2022-11)
; ; ; ; ; ; ; ; ; ; ; Boron (B) and Lithium (Li) concentrations were studied in the Platani river, one of the most important catchments of South-Central Sicily which is under semiarid climatic conditions for roughly eight months to a year. In this area, evaporites result in potential B and Li sources for surface waters. Results from river waters have measured ionic strength values between 0.1 and 4.54 M. B and Li distributions in these waters were studied in colloidal (CF, extracted by ultrafiltration from the 0.45 μm filtrate) and total dissolved (TDF) fractions and in fractions extracted from corresponding riverbed sediments, according to changes of the B/Li ratio. In river waters, CF and TDF showed very similar B/Li values, suggesting that only negligible fractionation occurs between Li and B in the aqueous phase. Similar evidence was observed between B/Li values in TDF and the labile sediment fraction, whereas an inverse relationship arose between B/Li values in TDF and in the easily reducible sediment fraction. This relationship indicates that Mn oxy-hydroxides preferentially react with aqueous B species relative to Li at the riverbed sediment interface. The extent of the B-Mn oxy-hydroxide reactions is influenced by the ionic strength, so that only B/Li values below 4 are measured in river waters with ionic strength values above 0.5 M. Comparing B/Li and ionic strength values measured in the Platani river with those from oxic brines worldwide, the same preferential B removal relative to Li is observed. This evidence suggests that B is removed as positively-charged borate ion-pairs, formed in the aqueous phase under higher ionic strength conditions, reacting with negatively charged surfaces of Mn oxy-hydroxides. The observed B reactivity relative to Li could be exploited to bring down the B excess from natural or waste waters, allowing the natural reactions with Mn oxy-hydroxides to take place under natural conditions.44 9 - PublicationRestrictedZr, Hf and REE distribution in river water under different ionic strength conditions(2018-12-15)
; ; ; ; ; ; ; ; ; ; ; The Platani River flowing in south-central Sicily, interacting with evaporite rocks, generates a wide range of ionic strength in the water catchment from 0.1 to 5.0molkg-1. We sampled 38 river sites and analysed the composition for the dissolved fraction filtered through 0.45μm, the truly dissolved fraction obtained through ultrafiltration (10kDa) and the relative included colloidal fraction. This study was focused on the recognition of Zr, Hf and REE behaviour under changing ionic strength conditions, since this is one of parameters responsible for colloid stability in natural waters. In turn, this phenomenon leads to REE release from the colloidal fraction and their scavenging onto surfaces of suspended particles or sediment, or their complexation with dissolved ligands. Our results indicated that in both dissolved and ultra-filtrated fractions REE increases either in the middle (Sm - Dy) or in the heavier (Ho - Lu) part of the PAAS-normalised distribution, while the Zr/Hf ratio value ranges from sub-chondritic to super-chondritic. Scanning Electron Microscopic and Energy Dispersive X-ray Spectrometric (SEM-EDS) analyses and dissolved Mg, Al and Fe concentrations suggested that the studied colloids consist of aggregations of Al-oxyhydroxides, carbonate nanoparticles and clays where organic traces were not found. The studied colloids showed greater affinity with dissolved Zr than Hf determining Zr/Hf values larger than the chondritic values. The largest Zr/Hf values were found in colloidal fractions from waters with ionic strength larger than 0.6molkg-1. These Zr/Hf values up to 280 (w/w) are provided by the faster removal of Hf relative to Zr from coagulating colloids and its preferential scavenging onto authigenic Fe-oxyhydroxides in bottom sediment. Further studies are needed to clarify is this suggested process can represent a suitable starting point for the Zr-Hf decoupling observed in seawater.184 4 - PublicationRestrictedThe behaviour of zirconium and hafnium during water-rock interactionZr and Hf are two elements with same ionic charge and similar ionic size at a given coordination number. Despite the Zr/Hf ratio is quite constant in meteorites and lithospheric rocks, in natural waters can be either higher or lower compared to values of interacting minerals and rocks. Here, we reanalyze very recent published and present new data on continental and brine waters indicating that the Zr and Hf behavior is dependent on the properties of the authigenic phases formed during the water-rock interaction process. Our results show that water pH in the range between 1 and 9 and water ionic strength in the range between 0.001 and 4 mol kg−1 are responsible for the change of the Zr/Hf ratio. However, analyzing the colloidal fraction comprising Fe-oxyhydroxides, carbonate and clay minerals (occasionally gypsum and halite), obtained by ultrafiltration at the dimension between 10 kDa and 0.45 μm diameter pore, we found that the Zr/Hf molar ratio is very low and variable between 5 and 35. We propose that the dissolved Zr/Hf ratio is dependent on the morphological and electrical properties of authigenic mineral surfaces and emphasize the lack of a quantitative evaluation of the ion speciation of Zr and Hf in natural waters and brines limiting the transport prediction of Zr and Hf during the complex water-rock interaction process.
76 1