Options
Rafflin, Victoria
Loading...
5 results
Now showing 1 - 5 of 5
- PublicationOpen AccessModelling CO2 dispersion in the air during potential limnic eruption at the lake Pavin (France)(2024)
; ; ; ; ; ; ; ; ; ; ; ; ;; ; ; ; ; ; ;; ; ;Risk mitigation in long-dormant volcanic provinces is a challenge due to the absence of collective memory of past disasters as well as the scarcity, and subtlety, of unrest signals that can be monitored. In this study, the impact of a potential limnic eruption is assessed at the 92-m-deep lake Pavin (French Massif Central). The lake is hosted in a maar crater formed during the last eruptive event in metropolitan France (∼7 ka) and contains dissolved CO2 in the deepest water layer, below 60 m. Carbon dioxide (CO2) emissions measured at the lake surface (0.44 km2) reach up to 10.1 tons/day during the winter. Beyond this (limited) continuous degassing of the lake, the current CO2 budget in the monimolimnion layer (at a depth of 60 m to 92 m) was estimated at 1750 tons, of which about 450 tons are available for release in case of overturn of the lake. Scenarios for CO2 dispersion in the lower atmosphere were simulated with the DISGAS and TWODEE-2 models by varying (i) meteorological conditions, (ii) the amount of CO2 released, (iii) and the mechanisms of degassing during a potential limnic eruption. The simulations allowed identification and delimitation of areas potentially impacted by hazardous CO2 levels in the air down-valley from the lake and directly around the lake. The spatio-temporal evolution of the potential CO2 cloud raises issues regarding the impacts of such a hypothetical event in the close vicinity of the lake and, given the area is populated and highly visited, needs to be considered in future risk mitigation strategies.92 12 - PublicationOpen AccessAnatomy of thermal unrest at a hydrothermal system: case study of the 2021–2022 crisis at Vulcano(2023-10-11)
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; Hydrothermal systems can generate phreatic and/or phreatomagmatic explosions with little warning. Understanding the temporal and spatial evolution of geophysical and geochemical signals at hydrothermal systems is crucial for detecting precursory signs of unrest and informing on hazards. Thermal signatures of such systems are poorly defined because data records are often too short or discrete compared to activity timescales, which can be decadal. La Fossa system of Vulcano has been monitored since the 1980s and entered a period of unrest in 2021. We assessed the thermal signature of La Fossa using ground- and satellite-based data with various temporal and spatial scales. While continuously recording stations provided continuous but point-based measurements, fumarole field vent surveys and infrared images obtained from satellite-flown sensors (ASTER and VIIRS) allowed lower temporal resolution but synoptic records to be built. By integrating this multi-resolution data set, precursory signs of unrest could retrospectively be detected from February to June 2021. The intensity of all unrest metrics increased during the summer of 2021, with an onset over a few days in September 2021. By September, seismic, CO2, SO2 and other geochemical metrics also indicated unrest, leading Civil Protection to raise the alert level to yellow on October 1. Heat flux, having been 4 MW in May 2019, increasing to 90 MW by September, and peaking at 120 MW in March 2022. We convolved our thermal data sets with all other monitoring data to validate a Vulcano Fossa Unrest Index (VFUI), the framework of which can be potentially applied to any hydrothermal system. The VFUI highlighted four stages of unrest, none of which were clear in any single data set: background, precursory, onset, and unrest. Onset was characterized by a sudden release of fluids, likely caused by the failure of sealed zones that had become pressurized during the precursory phase that began possibly as early as February 2021. Unrest has been ongoing for more than 18 months and may continue for several more years. Our understanding of this system behavior has been due to hindsight, but demonstrates how multiparametric surveys can track and forecast unrest.270 16 - PublicationEmbargoMagma storage and degassing beneath the youngest volcanoes of the Massif Central (France): Lessons for the monitoring of a dormant volcanic province(2023)
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;; ; ; ; ;Developing appropriate monitoring strategies in long-quiescent volcanic provinces is challenging due to the rarity of recordable geochemical and geophysical signals and the lack of experienced eruptive phenomenology in living memory. This is the case in the Massif Central (France) where the last eruptive sequence formed the Pavin’s Group of Volcanoes, about 7 ka ago. There, current evidence of a mantle activity reminiscence is suggested by the presence of mineral springwaters, mofettes, and soil degassing. It appears fundamental as a prerequisite to decipher the evolution of the gas phase in the magmatic system at the time of the eruptive activity to understand the meaning of current local gas emissions. In this study, we develop an innovative approach coupling CO2 densimetry and geochemistry of fluid inclusions from products erupted by the Pavin’s Group of Volcanoes. 3D imagery by Raman spectroscopy revealed that carbonate forming in fluid inclusions may lead to underestimation of CO2 density in fluid inclusions by up to 50 % and thus to unreliable barometric estimates. Fortunately, we found that this effect may be limited by focusing on fluid inclusions with a small diameter (<4 m) and where no solid phase is detected on Raman spectra. The time evolution of the eruptions of the Pavin’s Group of Volcanoes shows a progressive decrease of the pressure of magma storage (from more than 9 kbar down to 1.5-2 kbar) in parallel to magma differentiation (from basanites at Montcineyre to benmoreites at Pavin). The analysis of the noble gases entrapped in fluid inclusions yielded two main conclusions: (1) the helium isotope signature (Rc/Ra = 6.5-6.8) is in the range of values obtained in fluid inclusions from mantle xenoliths in the Massif Central (Rc/Ra = 5.6±1.1, on average) suggesting partial melting of the subcontinental lithospheric mantle, and (2) magma degassing (4He/40Ar* from 4.0 to 16.2) mirrors magma differentiation and the progressive rise of the magma ponding zones of the Pavin’s Group of Volcanoes. According to our modelling, about 80 % of the initial gas phase would be already exsolved from these magmas, even if stored at mantle depth. Based on the results obtained from fluid inclusions, we propose a model of the evolution of the signature of noble gases and carbon isotopes from mantle depth to crustal levels. In this frame, gas emissions currently emitted in the area (Rc/Ra = 6.1-6.7 and 4He/40Ar* = 1.7) point to an origin in the lithospheric mantle. This study strongly encourages the establishment of a regular sampling of local gas emissions to detect potential geochemical variations that may reflect a change from current steady-state conditions190 2 - PublicationOpen AccessScientific response to the 2021 eruption of Nyiragongo based on the implementation of a participatory monitoring system(2022-05-06)
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; The development of a resilient society is a major challenge for growing human population faced with abundant natural hazards. During and after the May 22, 2021 eruption of Nyiragongo, the local population was surprised and scared by the subsequent seismicity and associated surface fracturing, coupled with the alert of a possible new eruptive vent opening in Goma (Democratic Republic of Congo) and/or Gisenyi (Rwanda). The creation of a toll-free phone number enabled the population to record fractures and gas/thermal anomalies affecting the area. Such work was fundamental in enabling scientists and authorities to assess the associated risks. Crucially, gas data showed that the degassing through fractures did not represent direct transfer of magmatic volatiles but was more likely of superficial origin. Surprisingly, this participatory work revealed that the first fractures appeared several weeks before the eruption and their opening was not detected by the monitoring system. This firmly underlines the need for scientists to anchor citizen science in monitoring strategies.308 13 - PublicationOpen AccessStructured elicitation of expert judgement in real-time eruption scenarios: an exercise for Piton de la Fournaise volcano, La Réunion island(2022)
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;Formalised elicitation of expert judgements has been used in recent years to help tackle several problematic societal issues, including volcanic crises and pandemic threats. We present an expert elicitation exercise for Piton de la Fournaise volcano, La Réunion island, held remotely in April 2021. This involved twenty-eight experts from nine countries who considered a hypothetical effusive eruption crisis involving a new vent opening in a high-risk area. The tele-elicitation presented several challenges, but is a promising and workable option for application to future volcanic crises. Our exercise considered an “uncommon” eruptive scenario with a vent outside the present caldera and within inhabited areas, and provided uncertainty ranges for several hazard-related questions for such a scenario (e.g. probability of eruption within a defined timeframe; elapsed time until lava flow reaches a critical location, and other hazard management issues). Our exercise indicated that such a scenario would probably present very different characteristics than the eruptions observed in recent decades, and that it is fundamental to include well prepared expert elicitations in updated civil protection evacuation plans to improve disaster response procedures.241 69