Options
Sgambato, Claudia
Loading...
8 results
Now showing 1 - 8 of 8
- PublicationOpen AccessSpatial migration of temporal earthquake clusters driven by the transfer of differential stress between neighbouring fault/shear-zone structures(2024-04)
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; Uncertainty concerning the processes responsible for slip-rate fluctuations associated with temporal clustering of surface faulting earthquakes is a fundamental, unresolved issue in tectonics, because strain-rates accommodated by fault/shear-zone structures are the key to understanding the viscosity structure of the crust and seismic hazard. We constrain the timing and amplitude of slip-rate fluctuations that occurred on three active normal faults in central Italy over a time period of 20–30 kyrs, using in situ 36Cl cosmogenic dating of fault planes. We identify five periods of rapid slip on individual faults lasting a few millennia, separated time periods of up to 10 millennia with low or zero slip-rate. The rapid slip pulses migrated across the strike between the faults in two waves from SW to NE. We replicate this migration with a model where rapid slip induces changes in differential stress that drive changes in strain-rate on viscous shear zones that drive slip-rate variability on overlying brittle faults. Earthquakes increase the differential stress and strain-rate on underlying shear zones, which in turn accumulate strain, re-loading stress onto the overlying brittle fault. This positive feedback produces high strain-rate episodes containing several large magnitude surface faulting earthquakes (earthquake clusters), but also reduce the differential stress on the viscous portions of neighbouring fault/shear-zones slowing the occurrence of large-magnitude surface faulting earthquakes (earthquake anticlusters). Shear-zones on faults experiencing anticlusters continue to accumulate viscous strain at a lowered rate, and eventually this loads the overlying brittle fault to failure, initiating a period of rapid slip through the positive feedback process described above, and inducing lowered strain-rates onto neighbouring fault/shear-zones. We show that these patterns of differential stress change can replicate the measured earthquake clustering implied by the 36Cl data. The stress changes are related to the fault geometry in terms of distance and azimuth from the slipping structure, implying that (a) strain-rate and viscosity fluctuations for studies of continental rheology, and (b) slip-rates for seismic hazard purposes are to an extent predictable given knowledge of the fault system geometry.63 11 - PublicationOpen AccessQUIN 2.0 - new release of the QUaternary fault strain INdicators database from the Southern Apennines of Italy(2024-02-12)
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;; ; ; ; ; ; ; ; ; ;; ; ; ;QUIN database integrates and organizes structural-geological information from published and unpublished sources to constrain deformation in seismotectonic studies. The initial release, QUIN1.0, comprised 3,339 Fault Striation Pairs, mapped on 445 sites exposed along the Quaternary faults of central Italy. The present Data Descriptor introduces the QUIN 2.0 release, which includes 4,297 Fault Striation Pairs on 738 Structural Sites from southern Italy. The newly investigated faults span ~500 km along the Apennines chain, with strikes transitioning from ~SE to ~SW and comprehensively details Fault Striation Pairs' location, attitude, kinematics, and deformation axes. Additionally, it offers a shapefile of the fault traces hosting the data. The QUIN 2.0 release offers a significant geographic extension to the QUIN 1.0, with comprehensive description of local geometric-kinematic complexities of the regional pattern. The QUIN data may be especially relevant for constraining intra-Apennine potential seismogenic deformation patterns, where earthquake data only offer scattered or incomplete information. QUIN's data will support studies aimed at enhancing geological understanding, hazard assessment and comprehension of fault rupture propagation and barriers.35 5 - PublicationOpen AccessQUIN 2.0 - new release of the QUaternary fault strain INdicators database from the Southern Apennines of Italy(2024-02-12)
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;; ; ; ; ; ; ; ; ; ;; ; ; ;QUIN database integrates and organizes structural-geological information from published and unpublished sources to constrain deformation in seismotectonic studies. The initial release, QUIN1.0, comprised 3,339 Fault Striation Pairs, mapped on 445 sites exposed along the Quaternary faults of central Italy. The present Data Descriptor introduces the QUIN 2.0 release, which includes 4,297 Fault Striation Pairs on 738 Structural Sites from southern Italy. The newly investigated faults span ~500 km along the Apennines chain, with strikes transitioning from ~SE to ~SW and comprehensively details Fault Striation Pairs' location, attitude, kinematics, and deformation axes. Additionally, it offers a shapefile of the fault traces hosting the data. The QUIN 2.0 release offers a significant geographic extension to the QUIN 1.0, with comprehensive description of local geometric-kinematic complexities of the regional pattern. The QUIN data may be especially relevant for constraining intra-Apennine potential seismogenic deformation patterns, where earthquake data only offer scattered or incomplete information. QUIN's data will support studies aimed at enhancing geological understanding, hazard assessment and comprehension of fault rupture propagation and barriers.3 2 - PublicationOpen AccessEmpirical scaling correlations between fault lengths and fault slip-rates in seismically-active extensional regions: The Calabria and Messina Strait region (southern Italy) as case study(2024)
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;; ; ; ; ; ;; ; ; In this study, we present scaling relationships between fault lengths, fault slip-rates and historical seismicity for an active normal fault system, seismically accommodating crustal extension within the upper plate of the Ionian subduction zone (southern Italy). This crustal extension is confirmed by historical seismicity and instrumental geodesy, with GNSS-derived values of horizonal deformation within a range of 2-3 mm/yr throughout Calabria and the Messina Strait region. We collated data for fault slip-rates, fault lengths and historical earthquakes for a given fault to explore whether fault slip-rates are correlated with fault size and their geometric moment.We present new results showing a robust correlation between fault lengths and fault slip-rates, which supports the idea of a relationship for a given fault between fault slip-rates and the geometric moment.We discuss our results in terms of how these correlations should be used if regional deformation is accommodated by localised strain on faults mostly arranged along strike rather than distributed strain on multiple faults across-strike. For instance, we compare our empirical correlation between fault lengths and fault throw-rates over the Middle-Late Pleistocene in Calabria and the Messina Strait with those from Central and Southern Apennines over the Holocene, characterized by strain distributed on multiple faults across-strike and strain localised on faults mostly arranged along-strike, respectively.Tectonic and seismic hazard implications are discussed for future investigations based on fault slip-rates, fault size and historical seismicity.14 2 - PublicationOpen AccessInfluence of Fault System Geometry and Slip Rates on the Relative Role of Coseismic and Interseismic Stresses on Earthquake Triggering and Recurrence VariabilityWe model Coulomb stress transfer (CST) due to 30 strong earthquakes occurring on normal faults since 1509 CE in Calabria, Italy, including the influence of interseismic loading, and compare the results to existing studies of stress interaction from the Central and Southern Apennines, Italy. The three normal fault systems have different geometries and long-term slip-rates. We investigate the extent to which stress transfer can influence the occurrence of future earthquakes and what factors may govern the variability in earthquake recurrence in different fault systems. The Calabrian, Central Apennines, and Southern Apennines fault systems have 91%, 73%, and 70% of faults with mean positive cumulative CST in the time considered; this is due to fewer faults across strike, more across strike stress reductions, and greater along-strike spacing in the three regions respectively. In regions with close along strike spacing or few faults across strike, such as Calabria and Southern Apennines, the stress loading history is mostly dominated by interseismic loading and most faults are positively stressed before an earthquake occur on them (96% of all faults that ruptured in Calabria; 94% of faults in Southern Apennines), and some of the strongest earthquakes occur on faults with the highest mean cumulative stress of all faults prior to the earthquake. In the Central Apennines, where across strike interactions are the predominant process, 79% of earthquakes occur on faults positively stressed. The results highlight that fault system geometry plays a central role in characterizing the stress evolution associated with earthquake recurrence.
38 26 - PublicationOpen AccessOut of phase Quaternary uplift-rate changes reveal normal fault interaction, implied by deformed marine palaeoshorelines(2022-11-01)
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;; We have mapped and constrained the timing of tectonically deformed uplifted Late Quaternary palaeoshorelines in the Messina Strait, southern Italy, an area above a subduction zone containing active normal faults. The palaeoshorelines are preserved from up to thirteen Late Quaternary sea-level highstands, providing a record of the deformation over this timescale (~500 ka) for the Messina-Taormina Fault, the Reggio Calabria Fault and the Armo Fault. The palaeoshorelines reveal spatial patterns of uplift through time along the strike of these normal faults, and, given the across strike arrangement of the faults, also reveal how the contribution of each fault to the regional strain-rate progressed through time. The results reveal that the uplift rates mapped within the fault hangingwalls and footwalls were not constant through time, with a marked change in the location of strain accumulation at ~50 ka. The uplift rates, once converted into throw-rates, imply that the three faults comprised similar throw-rates prior to ~50 ka (in the range 0.77–0.96 mm/yr), with the Armo and Reggio Calabria faults then switching to lower rates (0.32 mm/yr and 0.33 mm/yr respectively), whilst the Messina-Taormina Fault accelerated to 2.34 mm/yr. The regional extension rate, gained by summing the implied heave rates across the three faults, was maintained through time despite this re-organisation of local strain accumulation at ~50 ka. We explain these out-of-phase fault throw-rate changes during the constant-rate regional extension conditions as due to interactions between these upper plate normal faults. We finally discuss how fault throw-rates changing through time may affect a long-term seismic hazard assessment within active normal fault systems.100 17 - PublicationOpen AccessSurface faulting earthquake clustering controlled by fault and shear-zone interactions(2022-11)
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; Surface faulting earthquakes are known to cluster in time from historical and palaeoseismic studies, but the mechanism(s) responsible for clustering, such as fault interaction, strain-storage, and evolving dynamic topography, are poorly quantified, and hence not well understood. We present a quantified replication of observed earthquake clustering in central Italy. Six active normal faults are studied using 36Cl cosmogenic dating, revealing out-of-phase periods of high or low surface slip-rate on neighboring structures that we interpret as earthquake clusters and anticlusters. Our calculations link stress transfer caused by slip averaged over clusters and anti-clusters on coupled fault/shear-zone structures to viscous flow laws. We show that (1) differential stress fluctuates during fault/shear-zone interactions, and (2) these fluctuations are of sufficient magnitude to produce changes in strain-rate on viscous shear zones that explain slip-rate changes on their overlying brittle faults. These results suggest that fault/shear-zone interactions are a plausible explanation for clustering, opening the path towards process-led seismic hazard assessments.90 13 - PublicationOpen AccessDistributed normal faulting in the tip zone of the South Alkyonides Fault System, Gulf of Corinth, constrained using 36Cl exposure dating of late-Quaternary wave-cut platforms(2020)
; ; ; ; ; ; ; ; ; ; ; ; ; ; ;The geometry, rates and kinematics of active faulting in the region close to the tip of a major crustal-scale normal fault in the Gulf of Corinth, Greece, are investigated using detailed fault mapping and new absolute dating. Fault offsets have been dated using a combination of 234U/230Th coral dates and in situ 36Cl cosmogenic exposure ages for sediments and wave-cut platforms deformed by the faults. Our results show that deformation in the tip zone is distributed across as many as eight faults arranged within ~700 m across strike, each of which deforms deposits and landforms associated with the 125 ka marine terrace of Marine Isotope Stage 5e. Summed throw-rates across strike achieve values as high as 0.3–1.6 mm/yr, values that are comparable to those at the centre of the crustal-scale fault (2–3 mm/yr from Holocene palaeoseismology and 3–4 mm/yr from GPS geodesy). The relatively high deformation rate and distributed deformation in the tip zone are discussed in terms of stress enhancement from rupture of neighbouring crustal-scale faults and in terms of how this should be considered during fault-based seismic hazard assessment.99 6