Options
Del Pezzo, Edoardo
Loading...
Preferred name
Del Pezzo, Edoardo
Email
edoardo.delpezzo@ingv.it
Staff
staff
ORCID
Researcher ID
A-7492-2011
153 results
Now showing 1 - 10 of 153
- PublicationOpen AccessDepth and Spatial Variation of the Shear Wave Attenuation Parameters in the Shallow Crust and Lower Crust/Upper Mantle of Mt. Etna (Italy)(2024)
; ; ; ; ; ; ; Seismic wave attenuation is a key feature of seismic wave propagation that provides constraints on the composition and physical state of the medium within the Earth. We separated intrinsic and scattering attenuation coefficients for the shallow crust and lower crust/upper mantle in the Mt. Etna area. For this purpose, the Multiple Lapse Time Window Analysis (MLTWA) was applied to two groups of earthquakes, well separated in depth. We also studied the spatial variation of the attenuation parameters by dividing the study area into four sectors around Etna. The results show an effective homogeneity of the propagation characteristics inside Etna and, in particular, some lateral variations and minor variations with depth. We observe that structural discontinuities and lithology control scattering losses at all frequencies, with higher scattering in the shallow crust. The intrinsic absorption shows no sensitivity to the presence of these main geological structures and is quite uniform for different depths. Furthermore, compared to the northern sector of the volcano, the southern one shows stronger scattering attenuation at low frequencies. This pattern correlates well with the high seismic activity along most of Etna’s active tectonic structures and ascending magmatic fluids that characterize this sector of the volcano. Although we only discuss the differences in the ‘‘average’’ scattering and inelastic properties of the investigated volumes, the results of this study are very informative about the characteristics of each region. Moreover, they suggest that a future study is necessary, providing a more detailed picture of the spatial distribution of seismic attenuation in the study area, through a 3D inversion of the attenuation parameters estimated along the single source-receiver paths.108 18 - PublicationOpen AccessQβ, Qc, Qi, Qs of the Gargano Promontory (Southern Italy)(2023-08)
; ; ; ; ; ; ; ;; ;; ; ;We have provided the first estimate of scat- tering and intrinsic attenuation for the Gargano Prom- ontory (Southern Italy) analyzing 190 local earthquakes with M L ranging from 1.0 to 2.8. To separate the intrin- sic Q i and scattering Q s quality factors with the Wen- nerberg approach (1993), we have measured the direct S waves and coda quality factors ( Q 𝛽 , Q c ) in the same volume of crust. Q 𝛽 parameter is derived with the coda normalization method (Aki 1980) and Q c factor is derived with the coda envelope decay method (Sato 1977). We selected the coda envelope by performing an automatic picking procedure from T start = 1.5T S up to 30 s after origin time (lapse time T L ). All the obtained quality factors clearly increase with frequency. The Q c values correspond to those recently obtained for the area. The estimated Q i are comparable to the Q c at all frequencies and range between 100 and 1000. The Q s parameter shows higher values than Q i , except for 8 Hz, where the two estimates are closer. This implies a pre- dominance of intrinsic attenuation over the scattering attenuation. Furthermore, the similarity between Q i and Q c allows us to interpret the high Q c anomaly previ- ously found in the northern Gargano Promontory up to a depth of 24 km, as a volume of crust characterized by very low seismic dumping produced by conversion of seismic energy into heat. Moreover, most of the earth- quake foci fall in high Q i areas, indicating lower level of anelastic dumping and a brittle behavior of rocks.43 19 - PublicationOpen AccessScattering Attenuation Images of the Control of Thrusts and Fluid Overpressure on the 2016–2017 Central Italy Seismic Sequence(2023-04-28)
; ; ; ; ; ; ; ; ; ;; ; ; Deep fluid circulation likely triggered the large extensional events of the 2016–2017 Central Italy seismic sequence. Nevertheless, the connection between fault mechanisms, main crustal-scale thrusts, and the circulation and interaction of fluids with tectonic structures controlling the sequence is still debated. Here, we show that the 3D temporal and spatial mapping of peak delays, proxy of scattering attenuation, detects thrusts and sedimentary structures and their control on fluid overpressure and release. After the mainshocks, scattering attenuation drastically increases across the hanging wall of the Monti Sibillini and Acquasanta thrusts, revealing fracturing and fluid migration. Before the sequence, low-scattering volumes within Triassic formations highlight regions of fluid overpressure, which enhances rock compaction. Our results highlight the control of thrusts and paleogeography on the sequence and hint at the monitoring potential of the technique for the seismic hazard assessment of the Central Apennines and other tectonic regions.150 57 - PublicationOpen AccessFast Changes in Seismic Attenuation of the Upper Crust due to Fracturing and Fluid Migration: The 2016–2017 Central Italy Seismic Sequence(2022-06-29)
; ; ; ; ; ; ; ; ; ; ; The Amatrice–Visso–Norcia seismic sequence struck Central Italy across the Apenninic normal fault system in 2016. Fluids likely triggered the sequence and reduced the stability of the fault network following the first earthquake (Amatrice, Mw 6.0), with their migration nucleating the Visso (Mw 5.9) and Norcia (Mw 6.5) mainshocks. However, both spatial extent and mechanisms of fluid migration and diffusion through the network remain unclear. High fluid content, enhanced permeability, and pervasive microcracking increase seismic attenuation, but different processes contribute to different attenuation mechanisms. Here, we measured and mapped peak delay time and coda attenuation, using them as proxies of seismic scattering and absorption before and during the sequence. We observed that the structural discontinuities and lithology control the scattering losses at all frequencies, with the highest scattering delineating carbonate formations within the Gran Sasso massif. The Monti Sibillini thrust marks the strongest contrasts in scattering, indicating a barrier for northward fracture propagation. Absorption does not show any sensitivity to the presence of these main geological structures. Before the sequence, low-frequency high-absorption anomalies distribute around the NW-SE-oriented Apennine Mountain chain. During the sequence, a high-absorption anomaly develops from SSE to NNW across the seismogenic zone but remains bounded north by the Monti Sibillini thrust. We attribute this spatial expansion to the deep migration of CO2-bearing fluids across the strike of the fault network from a deep source of trapped CO2 close to the Amatrice earthquake. Fluids expand SSE-NNW primarily during the Visso sequence and then diffuse across the fault zones during the Norcia sequence.322 33 - PublicationOpen AccessMoment magnitude (Mw) from hydrophone records of low energy volcanic quakes(2022-05-25)
; ; ; ; ; ; ; ; ; AbstractEarthquake magnitude calibration using hydrophone records has been carried out at Campi Flegrei caldera, an active area close to the highly populated area of Naples city, partly undersea. Definite integrals of the hydrophone records amplitude spectra, between the limits of 1 and 20 Hz, were calculated on a set of small volcano-tectonic earthquakes with moment magnitudes ranging from 1 to 3.3. The coefficients of a linear relationship between the logarithm of these integrals and the magnitude were obtained by linear optimization, thus defining a useful equation to calculate the moment magnitude from the hydrophone record spectra. This method could be easily exported to other volcanic areas, where submerged volcanoes are monitored by networks of hydrophones and seismic sensors on land. The proposed approach allows indeed magnitude measurements of small magnitude earthquakes occurring at sea, thus adding useful information to the seismicity of these volcanoes.71 16 - PublicationOpen AccessSeismic Envelopes of Coda Decay for Q-coda Attenuation Studies of the Gargano Promontory (Southern Italy) and Surrounding RegionsHere, we describe the dataset of seismic envelopes used to study the S-wave Q-coda attenuation quality factor Qc of the Gargano Promontory (Southern Italy). With this dataset, we investigated the crustal seismic attenuation by the Qc parameter. We collected this dataset starting from two different earthquake catalogues: the first regarding the period from April 2013 to July 2014; the second regarding the period from July 2015 to August 2018. Visual inspection of the envelopes was carried out on recordings filtered with a Butterworth two-poles filter with central frequency fc = 6 Hz. The obtained seismic envelopes of coda decay can be linearly fitted in a bilogarithmic diagram in order to obtain a series of single source-receiver measures of Qc for each seismogram component at different frequency fc. The analysis of the trend Qc(fc) gives important insights into the heterogeneity and the anelasticity of the sampled Earth medium.
33 40 - PublicationOpen Access3D-Kernel Based Imaging of an Improved Estimation of (Qc) in the Northern Apulia (Southern Italy)(2021)
; ; ; ; ; ; ; ; ; ; ; We investigate crustal seismic attenuation by the coda quality parameter (Qc) in the Gargano area (Southern Italy), using a recently released dataset composed of 191 small earthquakes (1.0 ≤ ML ≤ 2.8) recorded by the local OTRIONS and the Italian INGV seismic networks, over three years of seismic monitoring. Following the single back-scattering theoretical assumption, Qc was computed using different frequencies (in the range of 2–16 Hz) and different lapse times (from 10 to 40 s). The trend of Qc vs. frequency is the same as that observed in the adjacent Umbria-Marche region. Qc at 1 Hz varies between 11 and 63, indicating that the area is characterized by active tectonics, despite the absence of high-magnitude earthquakes in recent decades. The 3D mapping procedure, based on sensitivity kernels, revealed that the Gargano Promontory is characterized by very low and homogeneous Qc at low frequencies, and by high and heterogeneous Qc at high frequencies. The lateral variations of Qc at 12 Hz follow the trend of the Moho in this region and are in good agreement with other geophysical observations.50 49 - PublicationOpen Access3-D Q-coda attenuation structure at Mt. Etna (Italy)(2021)
; ; ; ; ; ; ; ; ; Three dimensional attenuation images of Mt Etna volcano obtained by the analysis of Q-coda from local volcano-tectonic earthquakes are presented in this work. Seismic sources are confined inside the Etna structure with a maximum focal depth of 35 km below the sea level. The space distribution of the attenuation values was calculated by using 3-D weighting functions derived by the sensitivity kernels of Pacheco & Snieders and approximated by a polynomial interpolation, represented in the maps by using a backprojection method. Data were analyzed in four bands with central frequency placed at 1.5, 3, 6 and 12 Hz, respectively. We observed a frequency dependence of Q-coda with values that range from 55 at 1.5 Hz to 218 at 12 Hz. Q-coda space distribution in the Etna area shows almost uniformity in the average attenuation in the first 35 km below the surface. The images were derived with a resolution of 5 km. We observe as one of our main conclusions that Q-coda attenuation space anomalies are correlated with the areas of highest structural heterogeneities and are distributed along the well-known tectonic structures which characterize the crust in Mt Etna region. Previous and numerous velocity and attenuation images describing the structure of Mt Etna support our main conclusion: high Q-coda volumes almost coincide with the zones marked by high velocity and relative low total attenuation for direct waves.254 183 - PublicationOpen AccessSmall-Scale Volcanic Structures of the Aeolian Volcanic Arc Revealed by Seismic Attenuation(2021)
; ; ; ; ; ; ; ; ; We present the first two-dimensional (2-D) spatial distribution of seismic scattering and intrinsic attenuation beneath the Aeolian Islands arc. The Aeolian Islands archipelago represents one of the best examples of a small dimension volcanic island arc characterised by the alternation of different structural domains. Using the seismic wave diffusion model as the basis for the analysis, and using data from an active seismic experiment (TOMO-ETNA), we analysed more than 76,700 seismic paths marked by epicentre-seismic station pairs. Based on frequencies of 4–24 Hz, we identified high regional attenuation, comparable with other volcanic areas of the world. We used two different seismogram lengths, reflecting two different sampling depths, which allowed us to observe two different attenuative behaviours. As in most volcanic regions, scattering attenuation predominates over intrinsic attenuation, but some characteristics are area-specific. Volcanic structures present the highest contribution to scattering, especially in the low frequency range. This behaviour is interpreted to reflect the small size of the islands and the potentially relatively small size of individual magmatic feeding systems. In addition, strong scattering observed in one zone is associated with the northernmost part of the so-called Aeolian-Tindari-Letojanni fault system. In contrast, away from the volcanic islands, intrinsic attenuation dominates over scattering attenuation. We interpret this shift in attenuative behaviour as reflecting the large volume of sedimentary material deposited on the seabed. Owing to their poorly consolidated nature, sediments facilitate intrinsic attenuation via energy dissipation, but in general present high structural homogeneity that is reflected by low levels of scattering. Our results show that this region is not underlain by a large volcanic structural complex such as that beneath nearby Mt. Etna volcano. Instead, we observe dimensionally smaller and isolated subsurface volcanic structures. The identification of such features facilitates improved geological interpretation; we can now separate consolidated marine structures from independent subsurface volcanic elements. The results of this study provide a model for new research in similar regions around the world.32 22 - PublicationOpen AccessShallow Magma Storage Beneath Mt. Etna: Evidence From New Attenuation Tomography and Existing Velocity ModelsWe present a new three-dimensional (3D) image of attenuation beneath Mt. Etna volcano based on the coda normalization method. Mt. Etna is an ideal natural laboratory for the application of new or unconventional tomography techniques owing to high levels of seismicity spanning a wide range of epicentral distances and depths. We retrieved seismic waveforms from the database generated in the 2014 TOMO-ETNA seismic experiment and performed a joint interpretation of tomographic and geophysical inversion models to better constrain interpretations of the volcanic structure. We compared the attenuation tomography results with seismic inversion models (two P wave seismic models and a 3D coda wave seismic attenuation model) and the literature to highlight and interpret structural elements and their impact on the volcano dynamics. We created a new image of the inner structure of Mt. Etna that will help to constrain present and future volcanic behavior. In particular, we focused on magma storage below the summit area and identified a large high-attenuation volume that is characterized by physical properties compatible with the presence of magma and other fluids. The existence of such a large volume of magma in the shallow crust below Mt. Etna has implications for the eruptive potential of the volcano.
144 47