Options
Pucci, Stefano
Loading...
Preferred name
Pucci, Stefano
Email
stefano.pucci@ingv.it
Staff
staff
ORCID
Scopus Author ID
7004124486
80 results
Now showing 1 - 10 of 80
- PublicationOpen AccessA strainmeter array as the fulcrum of novel observatory sites along the Alto Tiberina Near Fault Observatory(2024-06-24)
; ;Bennett, Richard ;Mencin, David ;Johnson, Wade; ;Bohnhoff, Marco; ; ; ; ; ; ; ; ; ;Gottlieb, Mike; ; ; ; ; ;Van Boskirk, Liz; ;Mattioli, Glen; ;Urbani, Marco ;Akimbekova, Assel ;Palmieri, Luca; ;Schenato, Luca; ; ; ; ; ; ; ; ;; ; ; ; ; ;; ; ; ;; ; ; ; ; ;; ; ; ; ; ; ; ; ; ;Fault slip is a complex natural phenomenon involving multiple spatiotemporal scales from seconds to days to weeks. To understand the physical and chemical processes responsible for the full fault slip spectrum, a multidisciplinary approach is highly recommended. The Near Fault Observatories (NFOs) aim at providing highprecision and spatiotemporally dense multidisciplinary near-fault data, enabling the generation of new original observations and innovative scientific products. The Alto Tiberina Near Fault Observatory is a permanent monitoring infrastructure established around the Alto Tiberina fault (ATF), a 60 km long low-angle normal fault (mean dip 20°), located along a sector of the Northern Apennines (central Italy) undergoing an extension at a rate of about 3 mm yr −1. The presence of repeating earthquakes on the ATF and a steep gradient in crustal velocities measured across the ATF by GNSS stations suggest large and deep (5-12 km) portions of the ATF undergoing aseismic creep. Both laboratory and theoretical studies indicate that any given patch of a fault can creep, nucleate slow earthquakes, and host large earthquakes, as also documented in nature for certain ruptures (e.g., Iquique in 2014, Tōhoku in 2011, and Parkfield in 2004). Nonetheless, how a fault patch switches from one mode of slip to another, as well as the interaction between creep, slow slip, and regular earthquakes, is still poorly documented by near-field observation. With the strainmeter array along the Alto Tiberina fault system (STAR) project, we build a series of six geophysical observatory sites consisting of 80-160 m deep vertical boreholes instrumented with strainmeters and seismometers as well as meteorological and GNSS antennas and additional seismometers at the surface. By covering the portions of the ATF that exhibits repeated earthquakes at shallow depth (above 4 km) with these new observatory sites, we aim to collect unique open-access data to answer fundamental questions about the relationship between creep, slow slip, dynamic earthquake rupture, and tectonic faulting. - PublicationOpen AccessGeology of the lower Belice River valley, epicentral area of the M > 5 1968 seismic sequence (south-western Sicily, Italy)(2023-08-08)
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; We present a new 1:25,000-scale geological map of the lower Belice River valley, the area struck by the M > 5.0 devastating 1968 seismic sequence, whose seismic source and seismotectonic framework are still controversial. The map, utilizing dating methods and traditional field survey approaches integrated by high-resolution topography, provides an unprecedented detail and precision on the spatial distribution and on the compressional growth geometries of the prominent sedimentary sequence. This map, supported by the first recognition of an on-shore Chibanian-Calabrian deposition and by identifying a flight of marine terraces, offers new insights on the long-lasting syn-depositional tectonic forces up to late-Pleistocene-Holocene times. Such tectonic forces may take part in the regional ongoing deformational phase, prompting detailed studies on the potential seismic sources affecting the area.78 27 - PublicationOpen AccessA multidisciplinary approach gives new insights into the shallow structural setting of the Val d'Agri oilfield (Basilicata, southern Apennines, Italy);(2023-04)
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; The Val d’Agri (VA) oilfield in the Lucanian Apennines (southern Italy), represents the largest onshore in Europe. Since the 1990's, hydrocarbons are produced from a fractured carbonate reservoir with an average extraction rate of 7*104 barrels/day of oil and 3*106 Smc/day of gas. Part of the wastewater has been re-injected since 2006 into a marginal portion of the reservoir by a high-rate well (Costa Molina 2, CM2). Charged by the Italian oil and gas safety authority, the National Institute of Geophysics and Volcanology (INGV) monitors the VA industrial hydrocarbon operations through the research activity of a dedicated working group (CMS, Centro di Monitoraggio del Sottosuolo) and according to the governmental monitoring guidelines. The CMS operates the real-time acquisition and offline analyses of seismic data recorded at 56 seismic stations associated with public and private local seismic networks. The principal aim of the CMS is to investigate the risk associated with industrial activities that can induce or trigger seismic events by producing stress changes within the upper crustal volume. Previous works have highlighted a spatio-temporal relationship between micro-seismicity (ML ≤ 2.2) and wastewater injection, delineating a NE-dipping back-thrust near the CM2. Part of the microseismicity recorded in the southwestern portion of the VA has also been associated with the water level changes of the Pertusillo lake. One of the main challenges is to define an accurate structural setting of the VA to understand the potential of earthquakes in the area and investigate the presence of active faults. The VA consists of a Quaternary extensional tectonic basin and it is one of the areas of highest seismic hazard in Italy (Basilicata, 1857, M7 earthquake). The basin is bounded by two parallel and oppositely dipping normal fault systems: the Monti della Maddalena Fault System (MMFS) on its western side and the Eastern Agri Fault System (EAFS) on the eastern one. The characterization of the ongoing tectonic activity of the MMFS and EAFS, and their hierarchical relationship is still generating debate among the scientific community. We adopt a multidisciplinary approach based on detailed geological-structural, geophysical and seismic analyses, and electrical resistivity tomography, aimed at reconstructing the subsurface geology of the area and recognizing and characterizing the active and capable faults, and the associated potential for local seismic hazard. We present and discuss the results of this work, focusing on the relative location of seismic events that occurred between March and June 2022. The outcomes allow inferring interesting geologic constraints, highlighting the relationships between the distribution of local seismicity and the structural setting of the area in the uppermost crust (depth < 6 km).73 25 - PublicationOpen AccessPaleoseismological Constraints on the Anghiari Normal Fault (Northern Apennines, Italy) and Potential Implications for the Activity of the Altotiberina Low‐Angle Normal Fault(2023)
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;; ; ; ; ; ;; The NE-dipping Anghiari normal fault, bounding to the west the Sansepolcro basin in the Upper Tiber Valley (northern Apennines), is thought to be a synthetic splay of the Altotiberina low-angle normal fault (LANF), an active ENE-dipping extensional detachment whose seismogenic behavior is debated. In order to assess the Anghiari fault capability to break the surface during strong earthquakes and be the source of historical earthquakes, we acquired high resolution topographic data, performed field survey and geophysical investigations (Seismic reflection, Ground Penetrating Radar, Electrical Resistivity Tomography) and dug three paleoseismological trenches across different fault sections of the Anghiari fault. The acquired data reveal for the first time the Late Pleistocene to historical activity of the Anghiari fault, constraining the age of seven paleo-earthquakes over the last 25 ka, the youngest of which is comparable with one of the poorly constrained historical earthquakes of the Sansepolcro basin. The yielded slip rate is >0.2 mm/yr averaged over the last 25 ka and the recurrence interval is about 2,500–3,200 years. An analysis of the anisotropy of the magnetic susceptibility performed in one of the paleoseismological trenches revealed an extensional stress field, continuously acting during the sedimentation of the entire trenched stratigraphy. Our results confirm the ability of the Anghiari fault to generate surface faulting earthquakes. In addition, if the Anghiari fault does sole at depth into the Altotiberina low-angle normal fault, this LANF could also be seismogenic and generate M > 664 16 - PublicationOpen AccessEstimating the long-term slip rate of active normal faults: The case of the Paganica Fault (Central Apennines, Italy)(2022-10-15)
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; The footwall of the surface rupturing Paganica normal fault, the source of the 2009 L’Aquila earthquake (Mw 6.1) in the Central Apennines (Italy), was investigated using integrated geological and geomorphological approaches. The aim was to constrain the active tectonics by studying the Raiale River that orthogonally crosscuts the fault trace, where it provides a useful geomorphological marker of long-term fluvial incision and footwall uplift. Using morphostratigraphy and paleomagnetic analysis, the Plio–Pleistocene morphotectonic evolution of the area was reconstructed, comprising an ancient continental basin and paleolandforms that predate the footwall incision. Starting from the Late Early Pleistocene–Middle Pleistocene, fluvial dissection was mainly due to marked river downcutting triggered by significant activity of the Paganica Fault, which caused progressive base-level lowering. The Raiale River downcutting formed five Middle–Late Pleistocene fluvial terraces, that, along with absolute Optically Stimulated Luminescence (OSL) dating, allowed the identification of paleolongitudinal profiles with a diverging downstream configuration. Terrace dating yielded a minimum incision rate of 0.25 ± 0.02 mm/a, which only partially compensates the footwall uplift and can thus be considered as a minimum value for the Paganica Fault throw rate, which could reach up to ~0.45 mm/a. In parallel, using terrestrial cosmogenic nuclides, a denudation rate of 0.02–0.04 mm/a was measured on the summit of the footwall block. This denudation is in keeping with the drainage incision, suggesting a non-steady state for the fault footwall topography and a dominance of relief growth. Last, the analysis of the modern Raiale River longitudinal profile denoted an ungraded status, with two main knickzones that we interpret as transient forms due to tectonic perturbations, likely triggered by activity of the Paganica Fault during the end Early Pleistocene and the Late Pleistocene. Considering the 2009 L’Aquila earthquake coseismic rupture, we observe that the younger transience on the Raiale River longitudinal profile, if it is of tectonic origin, could have only been produced by much larger seismic events (i.e., Mw > 6.5) than those documented in the area by paleoseismological investigations. The collective results confirmed that in the Central Apennines, conditions of dynamic equilibrium are often not met, and that the persistence of transient perturbations induced by tectonics should be accounted for.127 112 - PublicationOpen AccessEnvironmental effects and seismogenic source characterization of the December 2020 earthquake sequence near Petrinja, Croatia(2022-03-26)
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;; ; ; ; ;; ; ; ; ;; ; ; ; ; ; ; ; ; ; ; ;; ;; ; ; ; ; ; ;; ; ; ; ;On 29 December 2020, a shallow earthquake of magnitude Mw 6.4 struck northern Croatia, near the town of Petrinja, more than 24 hours after a strong foreshock (Ml 5). We formed a reconnaissance team of European geologists and engineers, from Croatia, Slovenia, France, Italy and Greece, rapidly deployed in the field to map the evidence of coseismic environmental effects. In the epicentral area, we recognized surface deformation, such as tectonic breaks along the earthquake source at the surface, liquefaction features (scattered in the fluvial plains of Kupa, Glina and Sava rivers), and slope failures, both caused by strong motion. Thanks to this concerted, collective and meticulous work, we were able to document and map a clear and unambiguous coseismic surface rupture associated with the main shock. The surface rupture appears discontinuous, consisting of multi-kilometer en échelon right stepping sections, along a NW-SE striking fault that we call the Petrinja-Pokupsko Fault (PPKF). The observed deformation features, in terms of kinematics and trace alignments, are consistent with slip on a right lateral fault, in agreement with the focal solution of the main shock. We found mole tracks, displacement on faults affecting natural features (e. g. drainage channels), scarplets, and more frequently breaks of anthropogenic markers (roads, fences). The surface rupture is observed over a length of ∼13 km from end-to-end, with a maximum displacement of 38 cm, and an average displacement of ∼10 cm. Moreover, the liquefaction extends over an area of nearly 600 km² around the epicenter. Typology of liquefaction features include sand blows, lateral spreading phenomenon along the road and river embankments, as well as sand ejecta of different grain size and matrix. Development of large and long fissures along the fluvial landforms, current or ancient, with massive ejections of sediments is pervasive. These features are sometimes accompanied by small horizontal displacements. Finally, the environmental effects of the earthquake appear to be reasonably consistent with the usual scaling relationships, in particular the surface faulting. This rupture of the ground occurred on or near traces of a fault that shows clear evidence of Quaternary activity. Further and detailed studies will be carried out to characterize this source and related faults in terms of future large earthquakes potential, for their integration into seismic hazard models.632 136 - PublicationRestrictedSurface Faulting of the 26 December 2018, Mw 5 Earthquake at Mt. Etna Volcano (Italy): Geological Source Model and Implications for the Seismic Potential of the Fiandaca Fault(2022)
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; At Mt. Etna (Italy), volcano-tectonic earthquakes produce impressive surface faulting despite their moderate magnitude (M < 5.5), with historically well-documented ruptures featuring end-to-end lengths up to 6–7 km. The 26 December 2018, Mw 5.0 earthquake represents the strongest event of the last 70 years, with ground ruptures extending for 7.5 km along the Fiandaca fault, a partially hidden structure in the volcano's eastern flank. Field data collected by the EMERGEO Working Group (INGV) are here integrated with high-resolution photogrammetric surveys and geological-morphological observations to enable a detailed structural analysis and to reconstruct the morphotectonic process of fault growth. The deformation zone develops in a transtensional regime and shows a complex pattern, consisting of brittle structures arranged in en-échelon scale-invariant overlapping systems. Offsets and kinematics vary along the strike due to a major bend in the fault trace. We reconstructed a prevailing right-lateral displacement in the northern section of the fault and a dextral oblique slip in the southern one (max 35 cm); the dip-slip component increases southward (max 50 cm) and overall resembles the along-strike pattern of the long-term morphological throw. The kinematic analysis indicates a quasi-rigid behavior of the two fault blocks and suggests a geological model of rupture propagation that explains both the location of the seismic asperity in the northern section of the Fiandaca fault and the unclamping in the southern one. These findings are used to propose a conceptual model of the fault, representing insights for local fault-based seismic hazard assessment.968 31 - PublicationOpen AccessHigh‐Resolution Seismic Profiling in the Hanging Wall of the Southern Fault Section Ruptured During the 2016 M w 6.5 Central Italy Earthquake(2021-08-18)
; ; ; ; ; ; ; ; ; ; ; ; ; ; ;; ;; ; ; ; ; ; The Vettore–Bove normal fault system in central Italy ruptured during the 2016 MW 6.5 Norcia earthquake causing extensive surface faulting. At the Pian Grande di Castelluccio hanging wall basin, along the southern section of the fault ruptured during the MW 6.5 mainshock, we performed a high-resolution seismic reflection/refraction experiment aimed at (a) imaging the shallow pattern of the fault system, and (b) reconstructing the architecture of the continental infill. We collected three profiles for a total length of ∼8 km. We used a reflection processing flow and non-linear refraction tomography to obtain migrated stack sections and P-wave velocity images resolved down to the depth of the pre-Quaternary substratum. The main profile in the northern part of the basin crosses the westernmost splays of the ruptured fault zone striking N150°–170°. Seismic imaging unravels a ∼1 km-wide fault zone comprising three W-throwing splays and subsidiary faults, which affect the continental infill and produce a minimum aggregate Quaternary throw of ∼400 ± 100 m. Recent deformation is localized in this part of the surveyed fault section, attesting active displacement accumulation of the Vettore–Bove fault system. The other profiles in the central-southern part of the basin show additional faults, likely striking N20°–40° and which concurred to generate a ∼500 m-deep depocenter. These faults were mostly active during an early extensional phase; however, one of them likely displaces shallow layers with a throw close to the resolution limit of seismic data (<10 m), suggesting activity in the Late Pleistocene.555 80 - PublicationOpen AccessHigh resolution morphometric analysis of the Cordone del Vettore normal fault scarp (2016 central Italy seismic sequence): Insights into age, earthquake recurrence and throw rates(2021-05-18)
; ; ; ; ; ; ; ; ; ; ; We investigated the late Quaternary throw distribution of the main normal fault that ruptured during the Mw 6.5 2016 earthquake in central Italy by means of a high-resolution structure-from-motion (SfM)-derived Digital Surface Model (DSM). We focused on a key area along the Cordone del Vettore fault (CDV), which is part of the Vettore-Bove fault system (VBFS). The CDV displays a prominent compound post-glacial scarp that allowed the reconstruction of the along-strike cumulative throw distribution. We propose a geometric approach to calculate the CDV fault throw distribution from the reconstruction of a displaced glaciation-related erosional surface, used as a geomorphic marker, and a series of closely spaced cross profiles. The proposed calculation accounts for both the slip vector direction and the degraded scarp top, including field data on fault dip angles. Following this approach, we recognized two scarps with a minimum average fault throw of ~21 m and ~35 m for this section of the investigated fault strand. The correlation with the possible post-LGM (Last Glacial Maximum) deglaciation phases of the erosional surface suggests a minimum scarp age of 25–27 ka cal BP. Such an age provides a reasonable CDV fault throw rate of ~0.8 mm/a, comparable with known long-term throw rates of the VBFS and active Apennines normal faults. By comparing the reconstructed long-term Cordone del Vettore throw distribution with the 2016 coseismic one, ~24 2016-like surface faulting events are required to generate the main cumulative scarp, under the assumption of constant slip per event. This, along with the age of the scarp, yields an average earthquake recurrence time interval of ~1100 a. These results suggest the presence of multiple regional markers that correlates with different LGM (if not pre-LGM) major glacial phases, whose erosional processes allow the preservation of pre-existing bedrock fault scarp remnants.294 8 - PublicationOpen AccessSurface faulting during the 29 December 2020 Mw 6.4 Petrinja earthquake (Croatia)(2021-04-19)
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; The 29 December 2020, Mw 6.4 Petrinja earthquake nucleated at a depth of ~10 km in the Sisak-Moslavina County in northern Croatia, ~6 km WSW of the Petrinja town. Focal mechanisms, aftershocks distribution, and preliminary Sentinel-1 InSAR interferogram suggest that the NW-SE right-lateral strike-slip Pokupsko-Petrinja fault was the source of this event. The Croatian Geological Survey, joined by a European team of earthquake geologists from France, Slovenia and Italy, performed a prompt systematic survey of the area to map the surface effects of the earthquake. The field survey was guided by geological maps, preliminary morphotectonic mapping based on 1:5,000 topographical maps and InSAR interferogram. Locally, field mapping was aided by drone survey. We mapped unambiguous evidence of surface faulting at several sites between Župić to the NW and Hrastovica to the SE, in the central part of the Pokupsko-Petrinja fault, for a total length of ~6.5 km. This is probably a minimum length since several portions of the fault have not been explored yet, and in part crossing forbidden uncleared minefields. Surface faulting was observed on anthropic features (roads, walls) and on Quaternary sediments (soft colluvium and alluvium) and Miocene bedrock (calcarenites). The observed ruptures strike mostly NW-SE, with evidences of strike-slip right-lateral displacement and zones of extension (opening) or contraction (small pressure ridges, moletracks) at local bends of the rupture trace. Those ruptures are interpreted as evidences of coseismic surface faulting (primary effects) as they affect the morphology independently from the slope direction. Ground failures due to gravitational sliding and liquefaction occurrences were also observed, mapped and interpreted as secondary effects (see Amoroso et al., and Vukovski et al., this session). SE of Križ, the rupture broke a water pipeline with a right-lateral offset of several centimetres. Measured right-lateral net displacement varies from a few centimetres up to ~35 cm. A portion of the maximum measured displacement could be due to afterlisp, as it was mapped several days after the main shock. Hybrid surface ruptures (shear plus opening and liquefaction), striking SW-NE, with cm-size left-lateral strike-slip offsets were mapped on the northern side of the Petrinja town, ~3 km NE of the main fault. Overall, the rupture zone appears discontinuous. Several factors might be inferred to explain this pattern such as incomplete mapping of the rupture, inherited structural discontinuities within the Pokupsko-Petrinja fault system, or specific mechanical properties of the Neogene-Quaternary strata60 7