Options
Stramondo, Salvatore
Loading...
Preferred name
Stramondo, Salvatore
Email
salvatore.stramondo@ingv.it
Staff
staff
ORCID
140 results
Now showing 1 - 10 of 140
- PublicationOpen AccessA strainmeter array as the fulcrum of novel observatory sites along the Alto Tiberina Near Fault Observatory(2024-06-24)
; ;Bennett, Richard ;Mencin, David ;Johnson, Wade; ;Bohnhoff, Marco; ; ; ; ; ; ; ; ; ;Gottlieb, Mike; ; ; ; ; ;Van Boskirk, Liz; ;Mattioli, Glen; ;Urbani, Marco ;Akimbekova, Assel ;Palmieri, Luca; ;Schenato, Luca; ; ; ; ; ; ; ; ;; ; ; ; ; ;; ; ; ;; ; ; ; ; ;; ; ; ; ; ; ; ; ; ;Fault slip is a complex natural phenomenon involving multiple spatiotemporal scales from seconds to days to weeks. To understand the physical and chemical processes responsible for the full fault slip spectrum, a multidisciplinary approach is highly recommended. The Near Fault Observatories (NFOs) aim at providing highprecision and spatiotemporally dense multidisciplinary near-fault data, enabling the generation of new original observations and innovative scientific products. The Alto Tiberina Near Fault Observatory is a permanent monitoring infrastructure established around the Alto Tiberina fault (ATF), a 60 km long low-angle normal fault (mean dip 20°), located along a sector of the Northern Apennines (central Italy) undergoing an extension at a rate of about 3 mm yr −1. The presence of repeating earthquakes on the ATF and a steep gradient in crustal velocities measured across the ATF by GNSS stations suggest large and deep (5-12 km) portions of the ATF undergoing aseismic creep. Both laboratory and theoretical studies indicate that any given patch of a fault can creep, nucleate slow earthquakes, and host large earthquakes, as also documented in nature for certain ruptures (e.g., Iquique in 2014, Tōhoku in 2011, and Parkfield in 2004). Nonetheless, how a fault patch switches from one mode of slip to another, as well as the interaction between creep, slow slip, and regular earthquakes, is still poorly documented by near-field observation. With the strainmeter array along the Alto Tiberina fault system (STAR) project, we build a series of six geophysical observatory sites consisting of 80-160 m deep vertical boreholes instrumented with strainmeters and seismometers as well as meteorological and GNSS antennas and additional seismometers at the surface. By covering the portions of the ATF that exhibits repeated earthquakes at shallow depth (above 4 km) with these new observatory sites, we aim to collect unique open-access data to answer fundamental questions about the relationship between creep, slow slip, dynamic earthquake rupture, and tectonic faulting. - PublicationOpen AccessGiornata ONT 2023 - Proceedings Volume(2024-05-10)
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; The “Giornata ONT 2023” arises from the will to let know within INGV how many activities do people from the Osservatorio Nazionale Terremoti (ONT), and how strong is their contribution to the INGV missions: Research, Services, Education, Communication. In the nearly seven years of the current management the ONT has experienced a continuous evolutionary, sometimes complex, path. But it is always a straight path to pursue the objective of a continuous growth of the ONT. During these years the ONT has changed its name (from Centro Nazionale Terremoti – CNT, to ONT); it has experienced the coming out of some employees that moved to create the Irpinia new Section; it has lived the novelty of incoming people (example from the Centro Allerta Tsunami). It has also faced the need to overcome the limitations due to the worldwide pandemic emergency COVID19, either for the h24 services or for the research activities. Therefore in 2020 and 2021 we have only remotely attended the ONT days. The drive to be “in presenza” comes from this latter issue. We strongly want to meet, to talk face to face, to “Welcome” the young colleagues who are the injection of new ideas and perspectives, that are the necessary fuel to evolve the knowledge. As a matter of fact it emerges from the DNA of the ONT, i.e. the inclusiveness and the multidisciplinarity. This latter is widely testified by the ONT activities that are shared among the three Departments and their strategic objectives. The agenda of the “Giornata ONT 2023” has specifically emphasized the variety of the technical and scientific contents, that for sake of simplicity have been collected in the following themes: • Infrastructures, DataSharing and Laboratories • Analysis, Modelling, Interpretation of Geophysical Phenomena • National and International Projects (Research Results and Products from Completed Projects; Ongoing Projects) • Society Communication, Dissemination, Emergency Management • Seismic Surveillance And Tsunami Warning Overall, the contributions have been 100, most of which are posters (77) and the remaining (23) in different exhibit formats. The wide interest about the proposed contents and the positive feedback from the attendance, pushed the decision to collect and publish the contributions in a Miscellanea INGV, where the documents can be easily found. And we are finally ready to make the Miscellanea available to the reader. I would warmly thank the Authors for their enthusiastic acceptance to contribute, the Conveners of the “Giornata ONT 2023” Sessions for their availability to organise and manage the submitted poster/exhibits, the Editorial Board members for their hidden work that led to this Miscellanea. In conclusion, let me spend a few words about my personal journey as Director of the ONT. After 2504 days it has come to an end and the “Giornata ONT 2023” and the Miscellanea are, somehow, the cherry on top. It is really difficult to say “Thanks” one by one to the people who helped me along this complex and long path. So, please, let me simply say Grazie a tutti voi! Salvatore Stramondo - Director ONT (2017-2023)215 45 - PublicationOpen AccessLa rete sismica temporanea FXLand: contribuito al Progetto Fiber Optic Cable Use For Seafloor Studies Of Earthquake - FOCUS(2024-01-31)
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; Nel 2018 è stato avviato il progetto FOCUS - Fiber Optic Cable Use For Seafloor Studies Of Earthquake - coordinato da Marc-André Gutscher del Laboratoire Géosciences Océan dell’Università di Brest, in Francia. Questo progetto indaga la sismicità e la struttura crostale del Mar Ionio attraverso l’analisi e l’interpretazione di dati raccolti da strumentazione sottomarina e da reti di monitoraggio disponibili o appositamente installate nelle zone di costa. In tale contesto, l’Osservatorio Nazionale Terremoti (ONT) e l’Osservatorio Etneo (OE), entrambe Sezioni dell’Istituto Nazionale di Geofisica e Vulcanologia (INGV), e il Laboratorio di Sismologia dell'Università della Calabria (UniCal), hanno contribuito al progetto con l’installazione di una rete sismica temporanea lungo la costa ionica calabro-siciliana a integrazione della rete permanente presente nell’area dello Stretto di Messina. La rete temporanea, costituita da 13 stazioni, ha acquisito dal mese di dicembre 2021 al mese di giugno 2023. Nel gennaio 2022, i partner internazionali del progetto FOCUS hanno installato una rete temporanea di sismometri OBS e sensori di pressione per fondali marini. La grande quantità di dati raccolta e la loro integrazione, consentirà di migliorare il monitoraggio sismico e le conoscenze relative alla struttura terrestre dell’area con particolare attenzione alle strutture sismogenetiche con un dettaglio mai raggiunto fino a ora. Tutte le istituzioni coinvolte in FOCUS collaborano per l’acquisizione e l’elaborazione dei dati, l’imaging dell’interno della Terra attraverso l’utilizzo di tecniche avanzate, l’interpretazione e la modellazione dei dati. Il presente lavoro descrive la progettazione, la realizzazione e la gestione della rete temporanea a terra definita FXland, fornendo indicazioni relative sul suo generale funzionamento e sulle caratteristiche del dataset acquisito.407 29 - PublicationOpen AccessOn the ability of dual-polarimetric SAR measurements to observe lava flows under different volcanic environments(2023-09)
; ; ; ; ; ; ; ;; In this study, we discuss the extra-value of polarimetric information in observing the lava flow. Dualpolarimetric Synthetic Aperture Radar (SAR) measurements are processed using a polarimetric change detector that, instead of looking at the variation of the backscatter intensity between a pair of images collected before and after the event, looks at changes in the polarimetric scattering behavior. We demonstrate that the scattering changes detected by the proposed polarimetric approach well-correlate with the footprint of the lava flow provided by external sources. In addition, we also compare the performance of the polarimetric change detector with conventional single-polarization metrics showing that the former one always outperforms the incoherent single-polarization measurements. To further demonstrate the robustness of the polarimetric change detectors, we selected two test cases that refer to vulcanic eruptions calling for completely different environments. The first one, related to the Etna volcano, calls for a lava flow over a vegetation-free environment; the second one is related to the Nyiragongo volcano and calls for a lava flow in a vegetated environment. Experimental results show that the polarimetric change detectors automatically adapt to the changing environment outperforming the single-polarization detectors.61 19 - PublicationOpen AccessOn the Combination of Dual-Polarization Sentinel-1 Ascending/Descending Orbiting Passes to Estimate Damage Due to the 2016 Central Italy Earthquake(2022-10)
; ; ; ; ; ; ; ; ;; ; ; ;This study investigates the extra benefit provided by the joint use of synthetic aperture radar (SAR) polarimetric diversity and ascending/descending orbit passes to quantify postearthquake damage that occurred over the area of Amatrice, an Italian city significantly damaged by the 2016 Central Italy earthquake. First, the sensitivity of PolSAR features derived from SAR scenes collected under ascending/descending orbits to the damage is investigated. Then, the damage assessment is performed using a processing chain that consists of extracting dual-polarimetric SAR features to detect damage and, then, applying a fuzzy clustering scheme, to partition the feature outputs into damage levels. This processing chain is first separately applied to Sentinel-1 SAR scenes collected under ascending/descending orbits; then the processing outputs are merged using two different approaches. To discuss the quality of the estimated damage maps, ground information collected by surveys performed by a trained team is used. Experimental results show that the joint use of ascending/descending orbit passes improves the estimation of damage levels (up to 78 % ) with respect to the estimation performed using the orbiting passes separately.154 29 - PublicationOpen AccessCross-validated multi-technique geodetic dataset of the Upper Adriatic Sea coastal area of Italy(2022-08)
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; The geodetic dataset used in the research article entitled "Multi-technique geodetic detection of onshore and offshore subsidence along the Upper Adriatic Sea coasts"[1] is presented here. It consists of the outcomes of three different techniques, i.e. Synthetic Aperture Radar Interferometry (InSAR), Global Navigation Satellite System (GNSS) and topographic Levelling surveys. This dataset has been used for the estimation of onshore and offshore deformation in a mineral concession area located along the Upper Adriatic Sea coastal area (Italy), South-East of Ravenna city. InSAR data covers the period from 2002 to 2018, GNSS data from 1998 to 2018 and levelling data from 2002 to 2017.The different measurements have been cross-validated and referred to a common local reference system fixed in the urban area of Ravenna. This data collection will be very useful for deepening the analysis of any type of deformation in the Ravenna coastal area.605 28 - PublicationOpen AccessMulti-technique geodetic detection of onshore and offshore subsidence along the Upper Adriatic Sea coasts(2022-03)
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; We assess about 20 years of onshore and offshore subsidence along a sector of the Upper Adriatic Sea (Italy) coastal areas affected by natural soil compaction and intense anthropogenic activities such as aquifers exploitation and hydrocarbons extraction. Our approach is based on the synergistic use of independent remote sensing and in-situ geodetic data to detect and spatially characterise the deformation pattern by cross-validating the different available measurements. We collect extensive datasets from i) SAR images provided by Envisat, Cosmo- SkyMed and Sentinel-1 missions, ii) GNSS measurements from continuous stations managed by public institutions, local authorities and private companies and iii) Leveling surveys. The cross-validation analysis shows good agreement among all the independent datasets, thus providing a reliable assessment of the ongoing deformation. We detect an onshore and offshore subsidence peak of about 1/-1.5 cm/yr in the proximity of the coastline, close to Lido di Dante and Fiumi Uniti villages, and at the present offshore platform. The outcomes highlight how the integration of different remote sensing and in situ geodetic techniques is successful to retrieve deformation history in time and space in complex areas, where different natural and anthropogenic sources concur to the overall deformation pattern. Moreover, such approach provides a robust support to modelling studies for hazard assessment in both inland and shoreline areas.1077 76 - PublicationOpen AccessAnalysis of a large seismically induced mass movement after the December 2018 Etna volcano (southern Italy) seismic swarm(2021-06-01)
; ; ; ; ; ; ; ; ; ; ; ; ; In the recent decades, satellite monitoring techniques have enhanced the discovery of non-catastrophic slope movements triggered by earthquake shaking involving old paleo-landslides with deep-seated sliding surfaces. Understanding the triggering and attenuation mechanisms of such mass movements is crucial to assessing their hazard. In December 2018, Etna volcano (southern Italy) began a very intense eruption, which was accompanied by a seismic swarm with magnitudes reaching 4.9. Synthetic aperture radar data identified local displacements over a hilly area to the west of Paternò village. We evaluated the contribution of seismically induced surface instability to the observed ground displacement by employing a multidisciplinary analysis comprising geological, geotechnical and geomorphological data, together with analytical and dynamic modelling. The results allowed us to identify the geometry and kinematics of a previously unknown paleo-landslide, which was stable before the volcanic eruption. The landslide was triggered by the light-to-moderate seismic shaking produced by the strongest event of the seismic sequence, namely, the December 26, Mw 4.9 earthquake. This observation confirms that seismic shaking has a cumulative effect on landslides that does not necessarily manifest as a failure but could evolve into a catastrophic collapse after several earthquakes.379 25 - PublicationOpen AccessNumerical analysis of interseismic, coseismic and postseismic phases for normal and reverse faulting earthquakes in Italy(2021-04)
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; The preparation, initiation, and occurrence dynamics of earthquakes in Italy are governed by several frequently unknown physical mechanisms and parameters. Understanding these mechanisms is crucial for developing new techniques and approaches for earthquake monitoring and hazard assessments. Here, we develop a first-order numerical model simulating quasi-static crustal interseismic loading, coseismic brittle episodic dislocations, and postseismic relaxation for extensional and compressional earthquakes in Italy based on a common framework of lithostatic and tectonic forces. Our model includes an upper crust, where the fault is locked, and a deep crust, where the fault experiences steady shear.361 26 - PublicationOpen AccessSeismic Surveillance and Earthquake Monitoring in Italy(2021-03-03)
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; The Istituto Nazionale di Geofisica e Vulcanologia (INGV) is an Italian research institution with focus on earth sciences. Moreover, the INGV is the operational center for seismic surveillance and earthquake monitoring in Italy and is a part of the civil protection system as a center of expertise on seismic, volcanic, and tsunami risks.INGV operates the Italian National Seismic Network and other networks at national scale and is a primary node of the European Integrated Data Archive for archiving and distributing strong‐motion and weak‐motion seismic recordings. In the control room in Rome, INGV staff performs seismic surveillance and tsunami warning services; in Catania and Naples, the control rooms are devoted to volcanic surveillance. Volcano monitoring includes locating earthquakes in the regions around the Sicilian (Etna, Eolian Islands, and Pantelleria) and the Campanian (Vesuvius, Campi Fregrei, and Ischia) active volcanoes. The tsunami warning is based on earthquake location and magnitude (M) evaluation for moderate to large events in the Mediterranean region and also around the world. The technologists of the institute tuned the data acquisition system to accomplish, in near real time, automatic earthquake detection, hypocenter and magnitude determination, and evaluation of several seismological products (e.g., moment tensors and ShakeMaps). Database archiving of all parametric results is closely linked to the existing procedures of the INGV seismic surveillance environment and surveillance procedures. Earthquake information is routinely revised by the analysts of the Italian seismic bulletin. INGV provides earthquake information to the Department of Civil Protection (Dipartimento di Protezione Civile) to the scientific community and to the public through the web and social media. We aim at illustrating different aspects of earthquake monitoring at INGV: (1) network operations; (2) organizational structure and the hardware and software used; and (3) communication, including recent developments and planned improvements.6191 272