Options
Jarrard, R. D.
Loading...
Preferred name
Jarrard, R. D.
4 results
Now showing 1 - 4 of 4
- PublicationRestrictedNeogene tectonic and climatic evolution of the Western Ross Sea, Antarctica — Chronology of events from the AND-1B drill hole(2012-10)
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;Wilson, G. S.; Department of Marine Science, University of Otago, PO Box 56, Dunedin, New Zealand ;Levy, R. H.; GNS Science, PO Box 30‐368, Lower Hutt, New Zealand ;Naish, T. R.; Antarctic Research Centre, Victoria University of Wellington, PO Box 600, Wellington, New Zealand ;Powell, R. D.; Department of Geology & Environmental Geosciences, Northern Illinois University, DeKalb, IL 60115, USA ;Florindo, F.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italia ;Ohneiser, C.; Department of Geology, University of Otago, PO Box 56, Dunedin, New Zealand ;Sagnotti, L.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italia ;Winter, D. M.; ANDRILL Science Management Office, Department of Geosciences, University of Nebraska-Lincoln, Lincoln, NE 68588‐0340, USA ;Cody, R.; Antarctic Research Centre, Victoria University of Wellington, PO Box 600, Wellington, New Zealand ;Henrys, S.; GNS Science, PO Box 30‐368, Lower Hutt, New Zealand ;Ross, J.; New Mexico Institute of Mining & Technology, Earth & Environmental Sciences, Socorro, NM 87801, USA ;Krissek, L.; Byrd Polar Research Centre, The Ohio State University, Columbus, OH 43210, USA ;Niessen, F.; Alfred Wegener Institute, Department of Geosciences, Postfach 12 01 6, Am Alten Hafen 26, D-27515, Bremerhaven, Germany ;Pompillio, M.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Pisa, Pisa, Italia ;Scherer, R.; Department of Geology & Environmental Geosciences, Northern Illinois University, DeKalb, IL 60115, USA ;Alloway, B. V.; Antarctic Research Centre, Victoria University of Wellington, PO Box 600, Wellington, New Zealand ;Barrett, P. J.; Antarctic Research Centre, Victoria University of Wellington, PO Box 600, Wellington, New Zealand ;Brachfeld, S.; Department of Earth and Environmental Studies, Montclair State University, Montclair, NJ 07043, USA ;Browne, G.; GNS Science, PO Box 30‐368, Lower Hutt, New Zealand ;Carter, L.; Antarctic Research Centre, Victoria University of Wellington, PO Box 600, Wellington, New Zealand ;Cowan, E.; Department of Geology, Appalachian State University, Boone, NC 28608‐2067, USA ;Crampton, J.; GNS Science, PO Box 30‐368, Lower Hutt, New Zealand ;DeConto, R. M.; Department of Geosciences, University of Massachusetts, Amherst, MA 01003‐9297, USA ;Dunbar, G.; Antarctic Research Centre, Victoria University of Wellington, PO Box 600, Wellington, New Zealand ;Dunbar, N.; Department of Marine Science, University of Otago, PO Box 56, Dunedin, New Zealand ;Dunbar, R.; Department of Environmental Earth System Sciences, School of Earth Sciences, Stanford University, Stanford, CA 94305, USA ;von Eynatten, H.; Department of Sedimentology and Environmental Geology, Geoscience Center Göttingen (GZG), Goldschmidtstrasse 3, Göttingen, Germany ;Gebhardt, C.; Alfred Wegener Institute, Department of Geosciences, Postfach 12 01 6, Am Alten Hafen 26, D-27515, Bremerhaven, Germany ;Giorgetti, G.; Dipartimento di Scienze della Terra, Universita di Sienna, Via Laterina 8, I-53100, Sienna, Italy ;Graham, I.; GNS Science, PO Box 30‐368, Lower Hutt, New Zealand ;Hannah, M.; Antarctic Research Centre, Victoria University of Wellington, PO Box 600, Wellington, New Zealand ;Hansaraj, D.; Antarctic Research Centre, Victoria University of Wellington, PO Box 600, Wellington, New Zealand ;Harwood, D. M.; ANDRILL Science Management Office, Department of Geosciences, University of Nebraska-Lincoln, Lincoln, NE 68588‐0340, USA ;Hinnov, L.; Department of Earth and Planetary Sciences, Johns Hopkins University, Baltimore, MD 21218, USA ;Jarrard, R. D.; Department of Geology and Geophysics, University of Utah, Salt Lake City, UT 84112, USA ;Joseph, L.; Environmental Studies Program, Ursinus College, Collegeville, PA 19426, USA ;Kominz, M.; Department of Geology, Western Michigan University, Kalamazoo, MI 49008, USA ;Kuhn, G.; Alfred Wegener Institute, Department of Geosciences, Postfach 12 01 6, Am Alten Hafen 26, D-27515, Bremerhaven, Germany ;Kyle, P.; New Mexico Institute of Mining & Technology, Earth & Environmental Sciences, Socorro, NM 87801, USA ;Läufer, A.; Federal Institute for Geosciences & Natural Resources, BGR, Stilleweg 2, D-30655 Hannover, Germany ;McIntosh, W. C.; New Mexico Institute of Mining & Technology, Earth & Environmental Sciences, Socorro, NM 87801, USA ;McKay, R.; Antarctic Research Centre, Victoria University of Wellington, PO Box 600, Wellington, New Zealand ;Maffioli, P.; Università Milano-Bicocca, Dipartimento di Scienze Geologiche e Geotecnologie, Piazza della Scienza 4, I-20126 Milano, Italy ;Magens, D.; Alfred Wegener Institute, Department of Geosciences, Postfach 12 01 6, Am Alten Hafen 26, D-27515, Bremerhaven, Germany ;Millan, C.; Byrd Polar Research Centre, The Ohio State University, Columbus, OH 43210, USA ;Monien, D.; Alfred Wegener Institute, Department of Geosciences, Postfach 12 01 6, Am Alten Hafen 26, D-27515, Bremerhaven, Germany ;Morin, R.; US Geological Survey, Mail Stop 403, Denver Federal Center, Denver, CO 80225, USA ;Paulsen, T.; Department of Geology, University of Wisconsin, Oshkosh, 800 WI 54901, USA ;Persico, D.; Departimento di Scienze della Terra, Universita di Parma, Parco Aeres delle Scienze, 157 Parma, Italy ;Pollard, D.; Earth and Environmental Systems Institute, 2217 Earth-Engineering Science Bldg, University Park, PA 16802, USA ;Raine, J. I.; GNS Science, PO Box 30‐368, Lower Hutt, New Zealand ;Riesselman, C.; Department of Marine Science, University of Otago, PO Box 56, Dunedin, New Zealand ;Sandroni, S.; Dipartimento di Scienze della Terra, Universita di Sienna, Via Laterina 8, I-53100, Sienna, Italy ;Schmitt, D.; Department of Marine Science, University of Otago, PO Box 56, Dunedin, New Zealand ;Sjunneskog, C.; Antarctic Marine Geology Research Facility, Department of Geology, Florida State University, Tallahassee, FL 32306, USA ;Strong, C. P.; GNS Science, PO Box 30‐368, Lower Hutt, New Zealand ;Talarico, F.; Dipartimento di Scienze della Terra, Universita di Sienna, Via Laterina 8, I-53100, Sienna, Italy ;Taviani, M.; CNR, ISMAR — Bologna, Via Gobetti 101, I-40129 Bologna, Italy ;Villa, G.; Departimento di Scienze della Terra, Universita di Parma, Parco Aeres delle Scienze, 157 Parma, Italy ;Vogel, S.; Department of Geology & Environmental Geosciences, Northern Illinois University, DeKalb, IL 60115, USA ;Wilch, T.; Albion College, Department of Geology, Albion, MI 49224, USA ;Williams, T.; Columbia University, Lamont-Doherty Earth Observatory, Palisades, NY 10964, USA ;Wilson, T. J.; Byrd Polar Research Centre, The Ohio State University, Columbus, OH 43210, USA ;Wise, S.; Antarctic Marine Geology Research Facility, Department of Geology, Florida State University, Tallahassee, FL 32306, USA; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; Stratigraphic drilling from the McMurdo Ice Shelf in the 2006/2007 austral summer recovered a 1284.87 m sedimentary succession from beneath the sea floor. Key age data for the core include magnetic polarity stratigraphy for the entire succession, diatom biostratigraphy for the upper 600 m and 40Ar/39Ar ages for in-situ volcanic deposits as well as reworked volcanic clasts. A vertical seismic profile for the drill hole allows correlation between the drill hole and a regional seismic network and inference of age constraint by correlation with well‐dated regional volcanic events through direct recognition of interlayered volcanic deposits as well as by inference from flexural loading of pre‐existing strata. The combined age model implies relatively rapid (1 m/2–5 ky) accumulation of sediment punctuated by hiatuses, which account for approximately 50% of the record. Three of the longer hiatuses coincide with basin‐wide seismic reflectors and, along with two thick volcanic intervals, they subdivide the succession into seven chronostratigraphic intervals with characteristic facies: 1. The base of the cored succession (1275–1220 mbsf) comprises middle Miocene volcaniclastic sandstone dated at approx 13.5 Ma by several reworked volcanic clasts; 2. A late-Miocene sub-polar orbitally controlled glacial–interglacial succession (1220–760 mbsf) bounded by two unconformities correlated with basin‐wide reflectors associated with early development of the terror rift; 3. A late Miocene volcanigenic succession (760–596 mbsf) terminating with a ~1 my hiatus at 596.35 mbsf which spans the Miocene–Pliocene boundary and is not recognised in regional seismic data; 4. An early Pliocene obliquity-controlled alternating diamictite and diatomite glacial–interglacial succession(590–440 mbsf), separated from; 5. A late Pliocene obliquity-controlled alternating diamictite and diatomite glacial–interglacial succession (440–150 mbsf) by a 750 ky unconformity interpreted to represent a major sequence boundary at other locations; 6. An early Pleistocene interbedded volcanic, diamictite and diatomite succession (150–80 mbsf), and; 7. A late Pleistocene glacigene succession (80–0 mbsf) comprising diamictite dominated sedimentary cycles deposited in a polar environment.486 63 - PublicationRestrictedIntroduction: The ANDRILL McMurdo Ice Shelf (MIS) and Southern McMurdo Sound (SMS) Drilling Projects(2012-06)
; ; ; ; ; ;Paulsen, T. S.; Department of Geology, University of Wisconsin Oshkosh, Oshkosh, Wisconsin 54901, USA ;Pompilio, M.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Pisa, Pisa, Italia ;Niessen, F.; Alfred Wegener Institute for Polar and Marine Research, D-27568 Bremerhaven, Germany ;Panter, K.; Department of Geology, Bowling Green State University, Bowling Green, Ohio 43403-0218, USA ;Jarrard, R. D.; Department of Geology and Geophysics, 383 FASB, University of Utah, 115 S. 1460 East, Salt Lake City, Utah 84112-0102, USA; ; ; ; No Abstract225 30 - PublicationOpen AccessBorehole breakout analysis: results from the AND-2A Well(2010)
; ; ; ; ; ; ; ;Montone, P.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italia ;Pierdominici, S.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italia ;Jarrard, R.D.; University of Utah, Salt Lake City ;Wilson, T.; School of Earth Sciences, Ohio State University, 125 S. Oval Mall, Columbus, OH 43210 - USA ;Paulsen, T.; University of Wisconsin – Oshkosh, ;Wonik, T.; Inst. für Geowissen. Gemein., Hannover, Germany ;Handwerger, D.; TerraTek, A Schlumberger Co., Salt Lake City; ; ; ; ; ; To define the present-day stress field in the upper crust and to understand the recent tectonic activity in Antarctica, a study of breakout measurements along AND-2A well was performed. The borehole breakout is an important indicator of horizontal stress orientation and occurs when the stresses around the borehole exceed that required to cause compressive failure of the borehole wall (Bell and Gough, 1979; Zoback et al., 1985, Bell, 1990). The enlargement of the wellbore is caused by the development of intersecting conjugate shear planes that cause pieces of the borehole wall to spall off. Around a vertical borehole, stress concentration is greatest in the direction of the minimum horizontal stress (Shmin), hence, the long axes of borehole breakouts are oriented approximately perpendicular to the maximum horizontal stress orientation (SHmax). The orientation of breakouts along the AND-2A well was measured using acoustic (BHTV) and mechanical (Four-Arm Caliper) tools. Borehole televiewer (BHTV) provides an acoustic "image" of the borehole wall (360 degree coverage) and gives detailed information for investigation of fractures and stress analysis. The four-arm caliper is the oldest technique for borehole breakout identification and it is included in routine dipmeter logs. A quality value has been assigned to the well results in agreement with the World Stress Map quality ranking scheme (Zoback, 1992; Heidback et al., 2010) based mainly on the number, accuracy, and length of breakout measurements. The result is presented as rose diagram of the breakout directions where the length of each peak is proportional to the frequency and the width to the variance of its gaussian curve. We have analyzed the following curves to recognize the breakout: the azimuth of Pad 1 (P1az), the drift azimuth (HAZI), the two calipers with respect to the bit size (BZ) curve and the curve relative to the deviation of the well. The AND-2A Four-Arm Caliper data cover a depth interval between 637 down to 997 mbsl, that corresponds to 360 m of logged interval. We have distinguished breakouts and some washouts only in the interval from 753 to 825 mbsl. From borehole televiewer images, we have data from 398 mbsl down to 1136 mbsl. The BHTV worked well showing a lot of interesting features such as many bedding, lamination and fractures (natural and induced) but poor breakouts. The rare breakouts have also a small size (called protobreakouts) but they are consistent with induced features. Considering the breakout result from caliper and BHTV, the AND-2A borehole is unfortunately classified as D quality. This means that to obtain a reliable active stress field of the area it is necessary to compare this result with other available data.361 309 - PublicationRestrictedDownhole Measurements in the AND-2A Borehole, ANDRILL Southern McMurdo Sound Project, Antarctica(2009)
; ; ; ; ; ; ; ; ; ; ; ; ;the ANDRIL-SMS Science Team ;Wonik, T.; Leibniz Institute for Applied Geophysics, 30655 Hannover - Germany ;Grelle, T.; Leibniz Institute for Applied Geophysics, 30655 Hannover - Germany ;Handwerger, D.; TerraTek (Schlumberger), Salt Lake City, UT 84104 - USA ;Jarrard, R. D.; Dept. of Geology and Geophysics, Univ. of Utah, Salt Lake City, UT 84112 - USA ;McKee, A.; Raytheon Polar Services Corporation, Centennial, CO 80112-3938 - USA ;Patterson, T.; Montana Tech, 1300 West Park Street, Butte, MT 59701 - USA ;Paulsen, T.; Dept. of Geology, Univ. of Wisconsin at Oshkosh, Oshkosh, WI 54901-8649 - USA ;Pierdominici, S.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italia ;Schmitt, D. R.; Inst. for Geophysical Research, Dept. of Physics, Univ. of Alberta, Edmonton, Alberta, T6G 2G7 - Canada ;Schröder, H.; Leibniz Institute for Applied Geophysics, 30655 Hannover - Germany ;Speece, M.; Montana Tech, 1300 West Park Street, Butte, MT 59701 - USA ;Wilson, T.; School of Earth Sciences, The Ohio State University, Columbus, OH 43210-1522 - USA ;the ANDRIL-SMS Science Team; http://andrill.org/projects/sms/team.html; ; ; ; ; ; ; ; ; ; ; ; Under the framework of the ANDRILL Southern McMurdo Sound (SMS) Project successful downhole experiments were conducted in the 1138.54 metre (m)-deep AND-2A borehole. Wireline logs successfully recorded were: magnetic susceptibility, spectral gamma ray, sonic velocity, borehole televiewer, neutron porosity, density, calliper, geochemistry, temperature and dipmeter. A resistivity tool and its backup both failed to operate, thus resistivity data were not collected. Due to hole conditions, logs were collected in several passes from the total depth at ~1138 metres below sea floor (mbsf) to ~230 mbsf, except for some intervals that were either inaccessible due to bridging or were shielded by the drill string. Furthermore, a Vertical Seismic Profile (VSP) was created from ~1000 mbsf up to the sea floor. The first hydraulic fracturing stress measurements in Antarctica were conducted in the interval 1000-1138 mbsf. This extensive data set will allow the SMS Science Team to reach some of the ambitious objectives of the SMS Project. Valuable contributions can be expected for the following topics: cyclicity and climate change, heat flux and fluid flow, seismic stratigraphy in the Victoria Land Basin, and structure and state of the modern crustal stress field.300 23