Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/9927
DC FieldValueLanguage
dc.contributor.authorallHernandez-Moreno, C.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
dc.contributor.authorallSperanza, F.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
dc.contributor.authorallDi Chiara, A.; Department of Geophysics, University of São Pauloen
dc.date.accessioned2015-06-12T09:59:07Zen
dc.date.available2015-06-12T09:59:07Zen
dc.date.issued2014-10-21en
dc.identifier.urihttp://hdl.handle.net/2122/9927en
dc.description.abstractThe Liquiñe-Ofqui fault zone (LOFZ) is a major ~1000 km long dextral shear zone of southern Chile, likely related to strain partitioning of Nazca Plate oblique convergence with South America. To understand block rotation pattern along the LOFZ, we paleomagnetically sampled 55 sites (553 samples) between 38°S and 41°S. We gathered Oligocene to Pleistocene volcanics and Miocene granites at a maximum distance of 20 km from the LOFZ, and at both sides of it. Rotations with respect to South America, evaluated for 36 successful sites, show that crust around the LOFZ is fragmented in small blocks, ~1 to 10 km in size. While some blocks (at both fault edges) undergo very large 150°–170° rotations, others do not rotate, even adjacent to fault walls. We infer that rotations affected equidimensional blocks, while elongated crust slivers were translated subparallel to the LOFZ, without rotating. Rotation pattern across the LOFZ is markedly asymmetric. East of the fault and adjacent to it, rotations are up to 150°–170° clockwise, and fade out ~10 km east of fault. These data support a quasi-continuous crust kinematics, characterized by small rigid blocks drag by the underlying ductile crust flow, and imply 120 km of total fault offset. Conversely, crust west of the LOFZ is cut by seismically active NW-SE sinistral antithetic faults, and yields counterclockwise rotations up to 170° at 8–10 km from LOFZ, besides the unrotated blocks. Further data from the Chile fore arc are needed to understand block rotation kinematics and plate dynamics west of the LOFZ.en
dc.description.sponsorshipINGVen
dc.language.isoEnglishen
dc.publisher.nameAmerican Geophysical Unionen
dc.relation.ispartofTectonicsen
dc.relation.ispartofseries10/33(2014)en
dc.subjectLiquiñe-Ofqui fault zoneen
dc.subjectVertical-axis rotationen
dc.subjectStrike-slipen
dc.subjectPaleomagnetismen
dc.subjectRotation patternen
dc.titleUnderstanding kinematics of intra-arc transcurrent deformation: Paleomagnetic evidence from the Liquiñe-Ofqui fault zone (Chile, 38–41°S)en
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber1964-1988en
dc.subject.INGV04. Solid Earth::04.05. Geomagnetism::04.05.06. Paleomagnetismen
dc.identifier.doi10.1002/2014TC003622en
dc.relation.referencesAngermann, D., J. Klotz, and C. Reigber (1999), Space-geodetic estimation of the Nazca-South America euler vector, Earth Planet. Sci. Lett., 171(3), 329–334. Barrientos, S., and P. Acevedo-Aránguiz (1992), Seismological aspects of the 1988–1989 Lonquimay (Chile) volcanic eruption, J. Volcanol. Geotherm. Res., 53, 73–87. Beck, M. E. (1976), Discordant paleomagnetic pole positions as evidence of regional shear in the western Cordillera of North America, Am. J. Sci., 276, 694–712. Beck,M. E. (1986), Model for late Mesozoic-early Tertiary tectonics of coastal California and western Mexico, and speculations on the origin of the San Andreas Fault, Tectonics, 5, 49–64, doi:10.1029/TC005i001p00049. Beck, M. E. (1988), Analysis of late Jurassic—Recent paleomagnetic data from active plate margins of South America, J. South Am. Earth Sci., 1(1), 39–52, doi:10.1016/0895-9811(88)90014-4. Beck, M. E. (1989), Paleomagnetism of continental North America: Implications for displacement of crustal blocks within the Western Cordillera, Baja California to British Columbia, in Geophysical Framework of the Continental United States, edited by L. C. Pakiser and W. D. Mooney, Mem. Geol. Soc. Am., 172, 471–492. Beck, M. E. (1991), Coastwise transport reconsidered: Lateral displacements in oblique subduction zones, and tectonic consequences, Phys. Earth Planet. Inter., 68(1-2), 1–8, doi:10.1016/0031-9201(91)90002-Y. Beck, M. E., R. F. Burmester, and B. C. Steele (1998), Paleomagnetism of probably remagnetized late Mesozoic volcanic rocks near Lago Verde, Aisén, Southern Chile, Andean Geol., 25(2), 153–163. Beck, M., C. Rojas, and J. Cembrano (1993), On the nature of buttressing in margin-parallel strike-slip fault systems, Geology, 21, 755–758, doi:10.1130/0091-7613(1993)021<0755. Beck, M., R. Burmester, R. Drake, and P. Riley (1994), A tale of two continents: Some tectonic contrasts between the central Andes and the North American Cordillera, as illustrated by their paleomagnetic signatures, Tectonics, 13(1), 215–224, doi:10.1029/93TC02398. Beck, M., R. Burmester, J. Cembrano, and R. Drake (2000), Paleomagnetism of the North Patagonian Batholith, southern Chile. An exercise in shape analysis, Tectonophysics, 326, 185–202. Bird, P., and K. Piper (1980), Plane-stress finite element models of tectonic flow in southern California, Phys. Earth Planet. Inter., 21, 158–175. Bohm, M., S. Lüth, H. Echtler, G. Asch, and K. Bataille (2002), The Southern Andes between 36 and 40°S latitude: Seismicity and average seismic velocities, Tectonophysics, 356, 275–289. Bourne, S., P. England, and B. Parsons (1998), The motion of crustal blocks driven by flow of the lower lithosphere and implications for slip rates of continental strike-slip faults, Nature, 391, 655–659. Cande, S., and R. Leslie (1986), Late Cenozoic tectonics of the southern Chile trench, J. Geophys. Res., 91(B1), 471–496, doi:10.1029/ JB091iB01p00471. Cembrano, J., and F. Herve (1993), The Liquiñe-Ofqui fault zone: A major Cenozoic strike slip duplex in the Southern Andes, in Second ISAG, Oxford (U. K.), pp. 175–178, ORSTOM Editions, Paris. Cembrano, J., and L. Lara (2009), The link between volcanism and tectonics in the southern volcanic zone of the Chilean Andes: A review, Tectonophysics, 471(1–2), 96–113, doi:10.1016/j.tecto.2009.02.038. Cembrano, J., M. E. Beck, R. F. Burmester, C. Rojas, A. Garcia, and F. Herve (1992), Paleomagnetism of lower Cretaceous rocks from east of the Liquiñe-Ofqui fault zone, southern Chile: Evidence of small in-situ clockwise rotations, Earth Planet. Sci. Lett., 113(4), 539–551, doi:10.1016/0012-821X(92)90130-N.Cembrano, J., F. Hervé, and A. Lavenu (1996a), The Liquiñe-Ofqui fault zone: A long-lived intra-arc fault system in southern Chile, Tectonophysics, 1, 55–66. Cembrano, J., E. Schermer, A. Lavenu, F. Hervé, S. Barrientos, B. McClelland, and G. Arancibia (1996b), Nature and timing of Cenozoic intra-arc deformation, southern Chile, paper presented at Third ISAG, St. Malo, France. Cembrano, J., E. Schermer, A. Lavenu, and A. Sanhueza (2000), Contrasting nature of deformation along an intra-arc shear zone, the Liquiñe-Ofqui fault zone, southern Chilean Andes, Tectonophysics, 319, 129–149. Cembrano, J., A. Lavenu, and P. Reynolds (2002), Late Cenozoic transpressional ductile deformation north of the Nazca-South America- Antarctica triple junction, Tectonophysics, 354, 289–314. Cembrano, J., A. Lavenu, G. Yañez, R. Riquelme, M. García, G. González, and G. Hérail (2007), Neotectonics, in The Geology of Chile, edited by T. Moreno and W. Gibbons, pp. 231–262, Geol. Soc. London, U. K. Chen, W.-P., C.-Q. Yu, T.-L. Tseng, Z. Yang, C. Wang, J. Ning, and T. Leonard (2013), Moho, seismogenesis, and rheology of the lithosphere, Tectonophysics, 609, 491–503, doi:10.1016/j.tecto.2012.12.019. Chinn, D., and B. Isacks (1983), Accurate source depths and focal mechanisms of shallow earthquakes in western South America and in the New Hebrides island arc, Tectonics, 2(6), 529–563, doi:10.1029/TC002i006p00529. Cifuentes, I. N. I. S. L. (1989), The 1960 Chilean earthquakes, J. Geophys. Res., 94(B1), 665–680, doi:10.1029/JB094iB01p00665. Cowan, D., M. Botros, and H. Johnson (1986), Bookshelf tectonics: Rotated crustal blocks within the Sovanco Fracture Zone, Geophys. Res. Lett., 13(10), 995–998, doi:10.1029/GL013i010p00995. Cowgill, E., J. R. Arrowsmith, A. Yin, W. Xiaofeng, and C. Zhengle (2004), The Akato Tagh bend along the Altyn Tagh fault, northwest Tibet 2: Active deformation and the importance of transpression and strain hardening within the Altyn Tagh system, Geol. Soc. Am. Bull., 116, 1443, doi:10.1130/B25360.1. Demarest, H. (1983), Error analysis for the determination of tectonic rotation from paleomagnetic data, J. Geophys. Res., 88(B5), 4321–4328, doi:10.1029/JB088iB05p04321. Dewey, J. F., and S. H. Lamb (1992), Active tectonics of the Andes, Tectonophysics, 205(1–3), 79–95, doi:10.1016/0040-1951(92)90419-7. Diraison, M., P. R. Cobbold, E. A. Rossello, and A. J. Amos (1998), Neogene dextral transpression due to oblique convergence across the Andes of northwestern Patagonia, Argentina, J. South Am. Earth Sci., 11(6), 519–532. Dziewonski, A. M., G. Ekström, J. H. Woodhouse, and G. Zwart (1991), Centroid-moment tensor solutions for April–June 1990, Phys. Earth Planet. Inter., 66(3–4), 133–143, doi:10.1016/0031-9201(91)90072-P. England, P., and D. McKenzie (1982), A thin viscous sheet model for continental deformation, Geophys. J. Roy. Astron. Soc., 70, 295–321, doi:10.1111/j.1365-246X.1982.tb04969.x. England, P., and R. E. Wells (1991), Neogene rotations and quasicontinuous deformation of the Pacific Northwest continental margin, Geology, 19, 978–981. England, P., G. Houseman, and L. Sonder (1985), Length scales for continental deformation in convergent, divergent, and strike-slip environments: Analytical and approximate solutions for a thin viscous sheet model, J. Geophys. Res., 90(B5), 3551–3557, doi:10.1029/ JB090iB05p03551. Fisher, R. A. (1953), Dispersion on a sphere, Proc. R. Soc. London, Ser. A, 217, 295–305. Folguera, A., V. A. Ramos, R. L. Hermanns, and J. Naranjo (2004), Neotectonics in the foothills of the southernmost central Andes (37°–38°S): Evidence of strike-slip displacement along the Antiñir-Copahue fault zone, Tectonics, 23, TC5008, doi:10.1029/2003TC001533. Forsythe, R., and E. Nelson (1985), Geological manifestations of ridge collision: Evidence from the Golfo de Penas-Taitao basin, southern Chile, Tectonics, 4(5), 477–495, doi:10.1029/TC004i005p00477. Freund, R. (1974), Kinematics of transform and transcurrent faults, Tectonophysics, 21, 93–134. Garcia, A., M. Beck, R. Burmester, F. Munizaga, and F. Herve (1988), Pelomagnetic reconnaissance of the region de los Lagos, southern Chile, and its tectonic implications, Rev. geológica Chile, 15(1), 13–30. Garfunkel, Z. (1974), Model for the late Cenozoic tectonic history of the Mojave Desert, California, and for its relation to adjacent regions, Geol. Soc. Am. Bull., 85(12), 1931–1944, doi:10.1130/0016-7606(1974)85<1931. Garfunkel, Z., and H. Ron (1985), Block rotation and deformation by strike-slip faults: 2. The properties of a type of macroscopic discontinuous deformation, J. Geophys. Res., 90(B10), 8589, doi:10.1029/JB090iB10p08589. Geissman, J., J. Callian, J. Oldow, and S. Humphries (1984), Paleomagnetic assessment of oroflexural deformation in west-central Nevada and significance for emplacement of allochthonous assemblages, Tectonics, 3(2), 179–200, doi:10.1029/TC003i002p00179. Giacosa, R. E., and N. Heredia (2004), Estructura de los Andes Nordpatagónicos en los cordones Piltriquitrón y Serrucho y en el valle de El Bolsón (41°30′–42°002 S), Río Negro, Revista de la Asociación Geológica Argentina, 59(1), 91–102. Giacosa, R. E., J. C. Afonso, N. Heredia, and J. Paredes (2005), Tertiary tectonics of the sub-Andean region of the North Patagonian Andes, southern central Andes of Argentina (41–42°30′S), J. South Am. Earth Sci., 20(3), 157–170. Glodny, J., H. Echtler, S. Collao, M. Ardiles, P. Burón, and O. Figueroa (2008), Differential late Paleozoic active margin evolution in South-Central Chile (37°S–40°S)—The Lanalhue fault zone, J. South Am. Earth Sci., 26(4), 397–411, doi:10.1016/j.jsames.2008.06.001. Gradstein, F. M., J. G. Ogg, and A. G. Smith (2004), A Geologic Time Scale, vol. 86, Cambridge Univ. Press, Cambridge, U. K. Hackney, R., et al. (2006), The segmented overriding plate and coupling at the south-central Chilean margin (36–42°S), in The Andes: Active Subduction Orogeny: Frontiers in Earth Sciences, edited by O. Oncken et al., pp. 355–374, Springer-Verlag, Berlin, Heidelberg, New York. Haeussler, P. J., R. E. Wells, J. W. Hillhouse, A. Sarna-Wojcicki, and W. Thatcher (1991), Are there vertical axis rotations in the San Francisco Bay Region? Implications from paleomagnetic studies of the 6 m.y. Roblar Tuff, paper presented at Fall Meeting supll., Eos Trans. AGU, 72, pp. 44. Herron, E. M. (1981), Chile Margin near lat 38°S: Evidence for a genetic relationship between continental and marine geologic features or a case of curious coincidences?, Geol. Soc. Am. Mem., 154, 755–760. Hervé, F. (1993), Paleozoic metamorphic complexes in the Andes of Aysén (west of Occidentalia), in Proceedings of First Circum-Pacific and Circum- Atlantic Terrane Conference, edited by F. Gutiérrez et al., pp. 64–65, Guanajuato, Mexico. Hervé, F. (1994), The southern Andes between 39° and 44°S latitude: The geological signature of a transpressive tectonic regime related to a magmatic arc, in Tectonics of the Southern Central Andes: Structure and Evolution of an Active Continental Margin, edited by K. J. Reutter, E. Scheuber, and P. J. Wigger, pp. 243–248, Springer, Berlin. Hervé, F., and R. Thiele (1987), Estado de conocimiento de las magafallas en Chile y su significado tectónico, Comun. Univ. Chile, 38, 67–91. Hervé, M. (1976), Estudio Geológico de la falla Liquiñe-Reloncaví en el área de Liquiñe; antecedentes de un movimiento transcurrente (Provincia de Valdivia), paper presented at I Congreso Geológico Chileno, Serv. Nac de Geol y Min., Santiago de Chile, Chile. Hervé, M. (1977), Geología del área al este de Liquiñe, Provincia de Valdivia, X Región, Thesis, Depto. de Geología, Univ. de Chile, Chile. Hoeppener, R., E. Kalthoff, and P. Schrader (1969), Zur physikalischen Tektonik: Bruchbildung bei verschiedenen Deformationen im Experiment, Geol. Rundsch., 59, 179–193.Hoffmann-Rothe, A., N. Kukowski, N. Dresen, G. Echtler, O. Oncken, J. Klotz, E. Scheuber, and A. Kellner (2006), Oblique convergence along the Chilean margin: Partitioning, margin-parallel faulting and force interaction at the plate interface, in The Andes: Active Subduction Orogeny, edited by O. Oncken, pp. 125–146, Springer, Berlin, Heidelberg. Irving, E., G. J. Woodsworth, P. J. Wynne, and A. Morrison (1985), Paleomagnetic evidence for displacement from the south of the Coast Plutonic Complex, British Columbia, Can. J. Earth Sci., 22(4), 584–598. Jackson, J., and D. McKenzie (1984), Active tectonics of the Alpine-Himalayan Belt between western Turkey and Pakistan, Geophys. J. Int., 77, 185–264. Jackson, J., and P. Molnar (1990), Active faulting and block rotations in the western Transverse Ranges, California, J. Geophys. Res., 95(B13), 22,073–22,087, doi:10.1029/JB095iB13p22073. Kendrick, E., M. Bevis, R. Smalley, B. Brooks, R. B. Vargas, E. Laurı́a, and L. P. S. Fortes (2003), The Nazca–South America Euler vector and its rate of change, J. South Am. Earth Sci., 16(2), 125–131, doi:10.1016/S0895-9811(03)00028-2. Kimura, H., Y. Itoh, and H. Tsutsumi (2004), Quaternary strike-slip crustal deformation around an active fault based on paleomagnetic analysis: A case study of the Enako fault in central Japan, Earth Planet. Sci. Lett., 226(3–4), 321–334, doi:10.1016/j.epsl.2004.08.003. Kimura, H., N. Ishikawa, and H. Sato (2011), Estimation of total lateral displacement including strike-slip offset and broader drag deformation on an active fault: Tectonic geomorphic and paleomagnetic evidence on the Tanna fault zone in central Japan, Tectonophysics, 501(1–4), 87–97, doi:10.1016/j.tecto.2011.01.016. Kirschvink, J. L. (1980), The least-squares line and plane and the analysis of paleomagnetic data, Geophys. J. Roy. Astron. Soc., 62(3), 699–718. Klotz, J., G. Khazaradze, D. Angermann, C. Reigber, R. Perdomo, and O. Cifuentes (2001), Earthquake cycle dominates contemporary crustal deformation in central and southern Andes, Earth Planet. Sci. Lett., 193, 437–446, doi:10.1016/S0012-821X(01)00532-5. Lamb, S. H. (1987), A model for tectonic rotations about a vertical axis, Earth Planet. Sci. Lett., 84(1), 75–86, doi:10.1016/0012-821X(87)90178-6. Lamb, S., and H. Bibby (1989), The last 25 Ma of rotational deformation in part of the New Zealand plate-boundary zone, J. Struct. Geol., 11(4), 473–492. Lange, D., A. Rietbrock, C. Haberland, K. Bataille, T. Dahm, F. Tilmann, and E. R. Flüh (2007), Seismicity and geometry of the south Chilean subduction zone (41.5°S–43.5°S): Implications for controlling parameters, Geophys. Res. Lett., 34, L06311, doi:10.1029/2006GL029190. Lange, D., J. Cembrano, A. Rietbrock, C. Haberland, T. Dahm, and K. Bataille (2008), First seismic record for intra-arc strike-slip tectonics along the Liquiñe-Ofqui fault zone at the obliquely convergent plate margin of the southern Andes, Tectonophysics, 455(1–4), 14–24, doi:10.1016/j.tecto.2008.04.014. Lara, L. E., J. Cembrano, A. Lavenu, and J. Darrozes (2004), Monogenetic volcanoes in Southern Andes and their relationship with vertical displacements along major strike-slip intra-arc faults, in IAVCEI General Assembly, 104. Lavenu, A., and J. Cembrano (1999), Compressional- and transpressional-stress pattern for Pliocene and Quaternary brittle deformation in fore arc and intra-arc zones (Andes of Central and Southern Chile), J. Struct. Geol., 21(12), 1669–1691, doi:10.1016/S0191-8141(99)00111-X. López-Escobar, L., J. Cembrano, and H. Moreno (1995), Geochemistry and tectonics of the Chilean Southern Andes basaltic Quaternary volcanism (37–46°S), Andean Geol., 22(2), 219–234. MacDonald, W. D. (1980), Net tectonic rotation, apparent tectonic rotation, and the structural tilt correction in paleomagnetic studies, J. Geophys. Res., 85(B7), 3659, doi:10.1029/JB085iB07p03659. Mandl, G. (1987), Tectonic deformation by rotating parallel faults: The “bookshelf” mechanism, Tectonophysics, 141(4), 277–316, doi:10.1016/ 0040-1951(87)90205-8. McKenzie, D., and J. Jackson (1983), The relationship between strain rates, crustal thickening, palaeomagnetism, finite strain and fault movements within a deforming zone, Earth Planet. Sci. Lett., 65(1), 182–202, doi:10.1016/0012-821X(83)90198-X. McKenzie, D., and J. Jackson (1986), A block model of distributed deformation by faulting, J. Geol. Soc. London, 143(2), 349–353, doi:10.1144/ gsjgs.143.2.0349. Melnick, D., M. Sanchez, H. P. Echtler, and V. Pineda (2003), Geología estructural de la Isla Mocha, centro-sur de Chile (38°30′S, 74°W): Implicancias en la tectónica regional, paper presented at X Congreso Geológico Chileno, Serv. Nac de Geol y Min., Santiago de Chile, Chile. Melnick, D., F. Charlet, H. P. Echtler, and M. De Batist (2006a), Incipient axial collapse of the Main Cordillera and strain partitioning gradient between the central and Patagonian Andes, Lago Laja, Chile, Tectonics, 25, TC5004, doi:10.1029/2005TC001918. Melnick, D., A. Folguera, and V. A. Ramos (2006b), Structural control on arc volcanism: The Caviahue–Copahue complex, Central to Patagonian Andes transition (38°S), J. South Am. Earth Sci., 22(1–2), 66–88, doi:10.1016/j.jsames.2006.08.008. Melnick, D., B. Bookhagen, M. R. Strecker, and H. P. Echtler (2009), Segmentation of megathrust rupture zones from fore-arc deformation patterns over hundreds to millions of years, Arauco peninsula, Chile, J. Geophys. Res., 114, B01407, doi:10.1029/2008JB005788. Moreno, H., and J. Clavero (2006), Geología del área del Volcán Villarrica, 1:50,000, Carta Geológica de Chile, Serie Geología Básica 98, Ser. Nac. de Geol. y Min., Santiago de Chile, Chile. Moreno, H., and M. A. Parada (1976), Esquema geológico de la cordillera de los Andes, entre los paralelos 39°00′ y 41°30′S, in I Congreso Geológico Chileno, pp. 213–226, Santiago de Chile, Chile. Morton, W. H., and R. Black (1975), Crustal attenuation in Afar, in Afar Depression of Ethiopia, edited by A. Pilger and A. Rösler, pp. 55–65, Schweizerbart, Stuttgart, Germany. Munizaga, F., F. Herve, R. Drake, R. J. Pankhurst, M. Brook, and N. Snelling (1988), Geochronology of the Lake Region of south-central Chile (39°–42°S): Preliminary results, J. South Am. Earth Sci., 1(3), 309–316. Murdie, R., D. Prior, P. Styles, S. Flint, R. Pearce, and S. Agar (1993), Seismic responses to ridge-transform subduction: Chile triple junction, Geology, 21(12), 1095–1098, doi:10.1130/0091-7613(1993)021<1095. Nakamura, K. (1977), Volcanoes as possible indicators of tectonic stress orientation—Principle and proposal, J. Volcanol. Geotherm. Res., 2(1), 1–16. Nelson, E., R. Forsythe, and I. Arit (1994), Ridge collision tectonics in terrane development, J. South Am. Earth Sci., 7(3–4), 271–278, doi:10.1016/0895-9811(94)90013-2. Nelson, M., and C. Jones (1987), Paleomagnetism and crustal rotations along a shear zone, Las Vegas Range, southern Nevada, Tectonics, 6(1), 13–33, doi:10.1029/TC006i001p00013. Nur, A., H. Ron, and O. Scotti (1986), Fault mechanics and the kinematics of block rotations, Geology, 14, 746–749, doi:10.1130/0091-7613 (1986)14<746. Pankhurst, R. J., F. Hervé, L. Rojas, and J. Cembrano (1992), Magmatism and tectonics in continental Chiloé, Chile (42°–42°30′S), Tectonophysics, 205, 283–294. Pankhurst, R. J., S. D. Weaver, F. Hervé, and P. Larrondo (1999), Mesozoic-Cenozoic evolution of the North Patagonian batholith in Aysen, southern Chile, J. Geol. Soc., 156(4), 673–694.Pardo-Casas, F., and P. Molnar (1987), relative motion of the Nazca (Farallon) and South American plates since late Cretaceous time, Tectonics, 6(3), 233–248, doi:10.1029/TC006i003p00233. Piper, J., O. Tatar, and H. Gürsoy (1997), Deformational behaviour of continental lithosphere deduced from block rotations across the North Anatolian Fault Zone in Turkey, Earth Planet. Sci. Lett., 150, 191–203. Plafker, G., and J. Savage (1970), Mechanism of the Chilean earthquakes of May 21 and 22, 1960, Geol. Soc. Am. Bull., 81(4), 1001–1030, doi:10.1130/0016-7606(1970)81. Platzman, E., and J. Platt (1994), Why are there no clockwise rotations along the North Anatolian fault zone?, J. Geophys. Res., 99(B11), 21,705–21,715, doi:10.1029/94JB01665. Quinteros, J., and S. V. Sobolev (2013), Why has the Nazca plate slowed since the Neogene?, Geology, 41(1), 31–34, doi:10.1130/G33497.1. Ramos, M. E., D. Orts, F. Calatayud, P. J. Pazos, A. Folguera, and V. A. Ramos (2011), Estructura, Estratigrafía y evolución tectónica de la cuenca de Ñirihuau en las nacientes del río Cushamen, Chubut, Revista de la Asociación Geológica Argentina, 68(2), 210–224. Randall, K., S. Lamb, and C. Mac Niocaill (2011), Large tectonic rotations in a wide zone of Neogene distributed dextral shear, northeastern South Island, New Zealand, Tectonophysics, 509(3–4), 165–180, doi:10.1016/j.tecto.2011.05.006. Ransome, F. L., W. H. Emmons, and G. H. Garrey (1910), Geology of ore deposits of the Bullfrog district, Govt. Print. Off., U. S. Geol. Surv. Bull., 407, pp. 1–130, Nev. Rehak, K., M. R. Strecker, and H. P. Echtler (2008), Morphotectonic segmentation of an active forearc, 37°–41°S, Chile, Geomorphology, 94(1–2), 98–116, doi:10.1016/j.geomorph.2007.05.002. Rojas, C., M. Beck, and R. Burmester (1994), Paleomagnetism of the mid-Tertiary Ayacara Formation, southern Chile: Counterclockwise rotation in a dextral shear zone, J. South Am. Earth Sci., 7(1), 45–56. Romero, G. A. (1983), Geología del sector Alto Palena-Puerto Ramirez. Chiloé continental, Thesis, Univ. de Chile, Santiago de Chile, Chile. Ron, H., R. Freund, Z. Garfunkel, and A. Nur (1984), Block rotation by strike-slip faulting: Structural and paleomagnetic evidence, J. Geophys. Res., 89(B7), 6256–6270, doi:10.1029/JB089iB07p06256. Rosenau, M. (2004), Tectonics of the southern Andean intra-arc zone (38°–42°S), PhD thesis, 159 pp., Freie Univ., Berlin. Rosenau, M., D. Melnick, and H. Echtler (2006), Kinematic constraints on intra-arc shear and strain partitioning in the southern Andes between 38°S and 42°S latitude, Tectonics, 25, TC4013, doi:10.1029/2005TC001943. Roy, M., and L. Royden (2000), Crustal rheology and faulting at strike-slip plate boundaries: 2. Effects of lower crustal flow, J. Geophys. Res., 105(B3), 5599–5613, doi:10.1029/1999JB900340. Salyards, S. L., K. E. Sieh, and J. L. Kirschvink (1992), Paleomagnetic measurement of nonbrittle coseismic deformation across the San Andreas fault at Pallett Creek, J. Geophys. Res., 97(B2), 12,457–12,470, doi:10.1029/92JB00194. Sempere, T., G. Hérail, J. Oller, and M. Bonhomme (1990), Late Oligocene-early Miocene major tectonic crisis and related basins in Bolivia, Geology, 18(10), 946–949, doi:10.1130/0091-7613(1990)018<0946. Sernageomin (2003), Mapa Geológico de Chile: Versión digital, N°4, CD-ROM versión 1.0, Ser. Nac. de Geol. y Min., Publicación Geológica Digital, Santiago de Chile, Chile. Siame, L. L., O. Bellier, M. Sébrier, and M. Araujo (2005), Deformation partitioning in flat subduction setting: Case of the Andean foreland of western Argentina (28°S–33°S), Tectonics, 24, TC5003, doi:10.1029/2005TC001787. Solano, A. (1978), Geología del sector costero de Chiloé continental entre los 41°50′ y 42°10′ de latitud sur, Thesis, pp. 122, Univ. de Chile, Santiago de Chile, Chile. Somoza, R. (1998), Updated Nazca (Farallon)-South America relative motions during the last 40 My: Implications for mountain building in the central Andean region, J. South Am. Earth Sci., 11(3), 211–215. Sonder, L., and P. England (1986), Vertical averages of rheology of the continental lithosphere: Relation to thin sheet parameters, Earth Planet. Sci. Lett., 77, 81–90. Sonder, L. J., P. C. England, and G. A. Houseman (1986), Continuum calculation of continental deformation in transcurrent environments, J. Geophys. Res., 91, 4797–4810, doi:10.1029/JB091iB05p04797. Sonder, L. J., C. H. Jones, S. L. Salyards, and K. M. Murphy (1994), Vertical axis rotations in the Las Vegas Valley Shear Zone, southern Nevada: Paleomagnetic constraints on kinematics and dynamics of block rotations, Tectonics, 13(4), 769–788, doi:10.1029/94TC00352. Steffen, H. (1944), Patagonia occidental, las cordilleras patagónicas y sus regiones circundantes: Descripción del terreno basada en exploraciones propias, con un bosquejo de la historia de las expediciones practicadas en la región, in Ediciones de la Universidad de Chile, vol. 2, Universidad de Chile, Santiago de Chile, Chile. [Available at http://www.facso.uchile.cl/proyectos/proyectosteffen/documentos.html.] Sylvester, A. G. (1988), Strike-slip faults, Geol. Soc. Am. Bull., 100(11), 1666–1703. Taymaz, T., Y. Yilmaz, and Y. Dilek (2007), The geodynamics of the Aegean and Anatolia: Introduction, Geol. Soc. London, Spec. Publ., 291(1), 1–16, doi:10.1144/SP291.1. Terres, R., and B. Luyendyk (1985), Neogene tectonic rotation of the San Gabriel region, California, suggested by paleomagnetic vectors, J. Geophys. Res., 90(B14), 12,467–12,484, doi:10.1029/JB090iB14p12467. Thomson, S. N. (2002), Late Cenozoic geomorphic and tectonic evolution of the Patagonian Andes between latitudes 42°S and 46°S: An appraisal based on fission-track results from the transpressional intra-arc Liquiñe-Ofqui fault zone, Geol. Soc. Am. Bull., 114(9), 1159–1173, doi:10.1130/0016-7606(2002)114<1159. Titus, S. J., S. Crump, Z. McGuire, E. Horsman, and B. Housen (2011), Using vertical axis rotations to characterize off-fault deformation across the San Andreas fault system, central California, Geology, 39(8), 711–714, doi:10.1130/G31802.1. Torsvik, T., R. Müller, R. Van der Voo, B. Steinberger, and C. Gaina (2008), Global plate motion frames: Toward a unified model, Rev. Geophys., 46, RG3004, doi:10.1029/2007RG000227. Wang, K., Y. Hu, M. Bevis, E. Kendrick, R. Smalley, R. B. Vargas, and E. Lauría (2007), Crustal motion in the zone of the 1960 Chile earthquake: Detangling earthquake-cycle deformation and forearc-sliver translation, Geochem. Geophys. Geosyst., 8, Q10010, doi:10.1029/ 2007GC001721. Wettstein, A. (1886), Über die Fischfauna des Tertiären Glarner Schiefers, Schweiz. Palaeontol. Ges. Abh., 13, 1–101. Zijderveld, J. D. (1976), A. C. demagnetization of rocks: Analysis of results, in Methods in Paleomagnetism, Dev. in Solid Earth Geophys. vol. 3, edited by D. W. Collinson, K. M. Creer, and S. K. Runcorn, pp. 254–286, Elsevier, New York.en
dc.description.obiettivoSpecifico1A. Geomagnetismo e Paleomagnetismoen
dc.description.journalTypeJCR Journalen
dc.description.fulltextrestricteden
dc.relation.issn0278-7407en
dc.relation.eissn1944-9194en
dc.contributor.authorHernandez-Moreno, C.en
dc.contributor.authorSperanza, F.en
dc.contributor.authorDi Chiara, A.en
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
dc.contributor.departmentDepartment of Geophysics, University of São Pauloen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma2, Roma, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma2, Roma, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma2, Roma, Italia-
crisitem.author.orcid0000-0001-5492-8670-
crisitem.author.orcid0000-0002-9106-9796-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
Hernandez-Moreno et al., 2014.pdfMain article8.67 MBAdobe PDF
Show simple item record

WEB OF SCIENCETM
Citations

21
checked on Feb 10, 2021

Page view(s) 50

393
checked on Apr 24, 2024

Download(s) 50

79
checked on Apr 24, 2024

Google ScholarTM

Check

Altmetric