Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/9861
DC FieldValueLanguage
dc.contributor.authorallItaliano, F.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Palermo, Palermo, Italiaen
dc.contributor.authorallYuce, G.; Hacettepe University, Department of Geological Engineering, Beytepe, Ankara, Turkeyen
dc.contributor.authorallUysal, I. T.; The Queensland Geothermal Energy Centre of Excellence, The University of Queensland, QLD, Australiaen
dc.contributor.authorallGasparon, M.; School of Earth Sciences, The University of Queensland, QLD, Australiaen
dc.contributor.authorallMorelli, G.; Australian National Centre for Groundwater Research and Training, Australiaen
dc.date.accessioned2015-06-11T06:45:40Zen
dc.date.available2015-06-11T06:45:40Zen
dc.date.issued2014-04en
dc.identifier.urihttp://hdl.handle.net/2122/9861en
dc.description.abstractThe geochemical features of the volatiles dissolved in artesian thermal waters discharged over three basins (Millungera, Galilee and Cooper basin) of the Australian Great Artesian Basin (GAB) consistently indicate the presence of fluids from multiple gas sources located in the crust (e.g. sediments, oil reservoirs, granites) as well as minor but detectable contributions of mantle/magma-derived fluids. The gases extracted from 19 water samples and analyzed for their chemical and isotopic composition exhibit amounts of CO2 up to about 340 mlSTP/LH2O marked by a δ13CTDC (Total Dissolved Carbon) ranging from −16.9 to +0.18‰ vs PDB, while CH4 concentrations vary from 4.4 × 10−5 to 4.9 mlSTP/LH2O. Helium contents were between 9 and N2800 times higher than equilibrium with Air Saturated Water (ASW), with a maximum value of 0.12 mlSTP/LH2O. Helium isotopic composition was in the 0.02–0.21 Ra range (Ra = air-normalized 3He/4He ratio). The three investigated basins differ from each other in terms of both chemical composition and isotopic signatures of the dissolved gases whose origin is attributed to both mantle and crustal volatiles. Mantle He is present in the west-central and hottest part of the GAB despite no evidence of recent volcanism.Wefound that the partial pressure of helium, significantly higher in crustal fluids than in mantle-type volatiles, enhances the crustal He signature in the dissolved gases, thus masking the original mantle contribution. Neotectonic activity involving deep lithospheric structures and magma intrusions, highlighted by recent geophysical investigations, is considered to be the drivers of mantle/magmatic volatiles towards the surface. The results, although pertaining to artesian waters froma vast area of N542,000 km2, provide newconstraints on volatile injection, and showthat fluids' geochemistry can provide additional and independent information on the geo-tectonic settings of the Great Artesian Basin and its geothermal potential.en
dc.language.isoEnglishen
dc.publisher.nameElsevier Science Limiteden
dc.relation.ispartofChemical geologyen
dc.relation.ispartofseries/378-379 (2014)en
dc.subjectdissolved gasesen
dc.subjectgreat artesian basinen
dc.subjectmantle fluidsen
dc.subjecttectonic structuresen
dc.titleInsights into mantle-type volatiles contribution from dissolved gases in artesian waters of the Great Artesian Basin, Australiaen
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber75-88en
dc.subject.INGV05. General::05.02. Data dissemination::05.02.01. Geochemical dataen
dc.identifier.doi10.1016/j.chemgeo.2014.04.013en
dc.relation.referencesAndrews, J.N., 1985. The isotopic composition of radiogenic He and its use to study groundwater movement in confined aquifer. Chemical Geology 49, 339–351. Ballentine, C.J., Burnard, P.G., 2002. Production, release and transport of noble gases in the continental crust. In: Porcelli, D., Ballentine, C.J., Wieler, R. (Eds.), Rev. Mineral. Geochem, 47. Mineral. Soc. of Am., Washington, D. C., pp. 481–538. Ballentine, C.J., Burgess, R.,Marty, B., 2002b. Tracing fluid origin, transport and interaction in the crust. In: Porcelli, D., Ballentine, C.J., Wieler, R. (Eds.), vol. 47. Mineral. Soc. of Am., Washington, D. C., pp. 539–614. Banerjee, A., Person,M., Hofstra, A., Sweetkind, D., Cohen, D., Sabin, A., Unruh, J., Zyvoloski, G., Gable, C.W., Crossey, L., Karlstrom, K., 2011. Deep Permeable Fault-Controlled Helium Transport and Limited Mantle Flux in Two Extensional Geothermal Systems in the Great Basin, USA. Geology 39, 195–198. Beardsmore, G., 2004. The influence of basement on surface heat flowin the Cooper Basin. Explor. Geophys. 35, 223–235. Bethke, C.M., Zhao, X., Torgersen, T., 1999. Groundwater flow and the 4He distribution in the Great Artesian Basin of Australia. J. Geophys. Res. 104 (B6), 12,999–13,011. Boreham, C.J., Hope, J.M., Hartung-Kagi, B., 2001. Understanding source, distribution and preservation of Australian natural gas: a geochemical perspective. APEA J. 2001, 523–547. Carothers, W.W., Kharaka, Y.K., 1980. Stable isotopes of HCO3 in oil field waters implications for the origin of CO2. Geochim. Cosmochim. Acta 44, 323–332. Carr, L.K., Korsch, R.J., Jones, L.E.A., Holzschuh, J., 2010. The role of deep seismic reflection data in understanding the architecture and petroleum potential of Australia’s onshore sedimentary basins. APPEA, Journal and Conference Proceedings 50, 4. Cartwright, I.,Weaver, T., Tweed, S., Ahearne, D., Cooper, M., Czapnik, K., Tranter, J., 2002. Stable isotope geochemistry of cold CO2-bearing mineral spring waters, Daylesford, Victoria, Australia: sources of gas and water and links with waning volcanism. Chem. Geol. 185, 71–91. Chiodini, G., Cardellini, C., Amato, A., Boschi, E., Caliro, S., Frondini, F., Ventura, G., 2004. Carbon dioxide Earth degassing and seismogenesis in central and southern Italy. Geophys. Res. Lett. 31, L07615. Chivas, A.R., Barnes, I., Evans,W.C., Lupton, J.E., Stone, J.O., 1987. Liquid carbon dioxide of magmatic origin and its role in volcanic eruptions. Nature 326 (6113), 587–589. Chopra, P., 2003. Preview Australian Society of Exploration Geophysics 107, 34–36. Chopra, P.N., Holgate, F., 2005. A GIS analysis of temperature in the Australian crust. Proceedings World Geothermal Congress 2005. Antalya, Turkey, 24–29 April 2005 (7 pp.). Clark, D., McPherson, A., Collins, C.D.N., 2011. Australia's seismogenic neotectonic record: a case for heterogeneous intraplate deformation. Geoscience Australia, Record 2011/ 11 (95 pp.). Commonwealth of Australia, 2010. OzTemp-Interpreted Temperature at 5 km depth. Geoscience Australia (https://www.ga.gov.au/products/servlet). Cull, J.P., Conley, D., 1983. Geothermal gradients and heat flow in Australian sedimentary basins. BMR J. Aust. Geol. Geophys. 8, 329–337. Czuppon, G., Matsumoto, T., Handler, M.R., Matsuda, J.I., 2009. Noble gases in spinel peridotite xenoliths from Mt Quincan, North Queensland, Australia: undisturbed MORBtype noble gases in the subcontinental lithospheric mantle. Chem. Geol. 266, 19–28. Deighton, I., Hill, A.J., 1998. Thermal and burial history. In: Gravestock, D.I., Hibburt, J.E., Drexel, J.F. (Eds.), Petroleum Geology of South Australia. Vol. 4-Cooper Basin. Department of Primary Industries and Resources, Government of South Australia, pp. 143–155. Deines, P., 1970. The carbon and oxygen isotopic composition of carbonates from the Oka Carbonatite complex, Quebec, Canada. Geochim. Cosmochim. Acta 34, 1199–1225. Duncan, R.A., McDougall, I., 1989. Time-space relationships for Cainozoic intraplate volcanism in eastern Australia, the Tasman Sea and New Zealand. In: Johnson, J.W. (Ed.), Intraplate Volcanism in Eastern Australia and New Zealand. Cambridge University Press, Cambridge, pp. 43–53. Farley, K.A., Neroda, E., 1998. Noble gases in the Earth's Mantle. Annu. Rev. Earth Planet. Sci. 26, 189–218. Faulkners, P.,Maxwel, M., O'Connorl, L.K., Sargents, S.N., 2012. Coastal Geothermal Energy Initiative GSQ Julia Creek 1: well completion report and heat flow modelling results. Queensland Geological Record, 2012/05. Faure, G., Faure, G., 1986. Principles of Isotope Geology, 2nd edition. Wiley, New York p. 589. Fischer, T.P., Giggenbach, W.F., Sano, Y., Williams, S.N., 1998. Fluxes and sources of volatiles discharged from Kudryavy, a subduction zone volcano, Kurile Islands. Earth Planet. Sci. Lett. 160, 81–96. Fitzell, M.J., Maxwell,M., O'Connor, L.K., Sargent, S.N., Talebi, B., 2012. Coastal Geothermal Energy Initiative GSQ Dobbyn 2: well completion report and heat flow modelling results. Queensland Geological Record, 2012/04. Foley, J.E., Toksoz, M.N., Batini, F., 1992. Inversion of teleseismic travel time residuals for velocity structure in the Larderello Geothermal Field, Italy. Geophys. Res. Lett. 19, 5–8. Fourré, E., Di Napoli, R., Aiuppa, A., Parello, F., Gaubi, E., Jean-Baptiste, P., Allard, P., Calabrese, S., Ben Mamou, A., 2011. Regional variations in the chemical and helium–Gianelli, G., 1985. On the origin of geothermal CO2 by metamorphic processes. Boll. Soc. Geol. Ital. 104, 575–584. Graham, D.W., 2002. Noble gas isotope geochemistry ofmid-ocean ridge and ocean island basalts: characterization of mantle source reservoirs. In: Porcelli, D., Ballentine, C.J., Wieler, R. (Eds.), Rev. Mineral. Geochem., 47. Mineral. Soc. of Am, Washington, D. C., pp. 247–317. Güleç, N., Hilton, D.R., Mutlu, H., 2002. Helium isotope variations in Turkey: relations to tectonics, volcanism and recent seismic activities. Chemical Geology 187, 129–142. Habermehl, M.A., 2001. Wire-line logged waterbores in the Great Artesian Basin, Australia — Digital data of logs and waterbore data acquired by AGSO. AGSO Bull., 245. Bureau of Rural Sciences Publication, Canberra, Australia. Habermehl, R., Pestov, I., 2002. Geothermal Resources of the Great Artesian Basin, Australia. GHC Bull. (20–26). Hancock, P.L., Chalmers, R.M.L., Altunel, E., Cakir, Z., 1999. Travitonics: using travertines in active fault studies. J. Struct. Geol. 21 (8–9), 903–916. Heeswijck, A.V., 2006. The structure, sedimentology, sequence stratigraphy and tectonics of the northern Drummond and Galilee Basins, central Queensland, Australia. PhD Thesis Earth Environ. Sci., vol. I. James Cook University p. 156. Hillis, R.R., Müller, R.D., 2003. Evolution and Dynamics of the Australian Plate. Geological Society of America, Boulder, ISBN: 0-8137-2372-8 363. Hillis, R.R., Sandiford,M., Reynolds, S.D., Quigley, M.C., 2008. Present-day stress, seismicity and Neogene-to-Recent tectonics of Australia's ‘passive’margins: intraplate deformation controlled by plate boundary forces. In: Johnson, H., Doré, A.G., Gatliff, R.W., Holdsworth, R., Lundin, E.R., Ritchie, J.D. (Eds.), The nature and origin of compression in passive margins. Geol. Soc. Lond. Spec. Publ., vol. 306, pp. 71–90. Hilton, D.R., Hammerschmidt, K., Loock, G., Friedrichsen, H., 1993. Helium and Argon Isotope Systematics of the Central Lau Basin and Valu Fa Ridge: Evidence of Crust/Mantle Interactions in a Back-arc Basin. Geochim. Cosmochim. Acta 57, 2819–2841. Hilton, D.R., 1996. The helium and carbon isotope systematics of a continental geothermal system: results from monitoring studies at Long Valley caldera (California, U.S.A.). Chemical Geology 127 (4), 269–295. Holocher, J., Peeters, F., Aeschbach-Hertig, W., Hofer, M., Brennwald, M., Kinzelbach, W., Kipfer, R., 2002. Experimental investigations on the formation of excess air in quasi-saturated porous media. Geochim. Cosmochim. Acta 66 (23), 4103–4117. Huston, D.L., Blewett, R.S., Champion, D.C., 2012. The evolution of the Australian continent. Episodes 35, 23–44. Italiano, F., Nuccio, P.M., 1991. Geochemical investigations on submarinevolcanic exhalations to the East of Panarea, Aeolian Islands. Italy. Jour. Volc. And Geoth. Res. 46, 125–141. Italiano, F., Martelli, M., Martinelli, G., Nuccio, P.M., 2000. Geochemical evidences of melt intrusions along lithospheric faults of Irpinian Apennines (Southern Italy): geodynamic and seismogenetic implications. J. Geophys. Res. 105 (B6), 13569–13578. Italiano, F., Martinelli, G., Nuccio, P.M., 2001. Anomalies of mantle-derived helium during the 1997–1998 seismic swarm of Umbria-Marche, Italy. Geophys. Res. Lett. 28 (5), 839–842. Italiano, F., Martinelli, G., Plescia, P., 2008. CO2 degassing over seismic areas: the role of mechanochemical production at the study case of Central Apennines. Pure Appl. Geophys. 165 (1), 75–94. Italiano, F., Bonfanti, P., Ditta,M., Petrini, R., Slejko, F., 2009. Heliumand carbon isotopes in the dissolved gases of Friuli region (NE Italy): geochemical evidence of CO2 production and degassing over a seismically active area. Chem. Geol. 266, 76–85. Italiano, F., Sasmaz, A., Yuce, G., Okan, O., 2013. Thermal fluids along the East Anatolian Fault Zone (EAFZ): geochemical features and relationships with the tectonic setting. Chem. Geol. 339, 103–114. http://dx.doi.org/10.1016/j.chemgeo.2012.07.027. Javoy, M., Pineau, F., Delorme, H., 1986. Carbon and nitrogen isotopes in the mantle. Chem. Geol. 57 (1–2), 41–62. Johnson, R.W., 1989. Intraplate Volcanism in Eastern Australia and New Zealand: Cambridge University Press, Cambridge. p. 395. Johnston, A.C., Kanter, L.R., 1990. Earthquakes in Stable Continental Crust. Sci. Amer. 262, 68–75. Jones, J.G., Veewers, J.J., 1983. Mesozoic origins and antecedents of Australian’s Eastern Highlands. Journal of the Geological Society of Australia 30, 305–322. Kato, A., Kurashimo, E., Igarashi, T., Sakai, S., Iidaka, T., Shinohara, M., Kanazawa, T., Yamada, T., Hirata, N., Iwasaki, T., 2009. Reactivation of ancient rift systems triggers devastating intraplate earthquakes. Geophys. Res. Lett. 36, L05301. http://dx.doi. org/10.1029/2008GL036450. Kennedy, B.M., van Soest, M.C., 2006. A helium isotope perspective on the Dixie Valley, Nevada, hydrothermal system. Geothermics 35, 26–43. Kennedy, B.M., van Soest, M.C., 2007. Flow of mantle fluids through the ductilelower crust: Helium isotope trends. Science 318, 1433–1436. http://dx.doi.org/10.1126/science. 1147537. Kennett, B.L.N., Blewett, R., 2012. Lithospheric framework of Australia. Episodes 35, 9–22. Kennett, B.L.N., Salmon, M., Saygin, E., AusMoho Working Group, 2011. AusMoho: the variation in Moho depth in Australia. Geophys. J. Int. 187, 946–958. Korsch, R.J., Struckmeyer, H.I.M., Kirkby, A., Hutton, L.J., Carr, L.K., Hoffmann, K.L., Chopping, R., Roy, I.G., Fitzell, M., Totterdell, J.M., Nicoll, M.G., Talebi, B., 2011. Energy potential of the Millungera Basin, a newly discovered basin in North Queensland. APEA J. 295–332. Kulongoski, J.T., Hilton, D.R., Izbicki, J.A., 2005. Source and movement of helium in the eastern Morongo groundwater Basin: the influence of regional tectonics on crustal and mantle helium fluxes. Geochim. Cosmochim. Acta 69, 3857–3872. Langford, R.P., Wilford, G.E., Truswell, E.M., Isern, A.R., 1995. Palaeogeographic atlas of Australia. Volume 10-Cainozoic. Canberra, Australian Geological Survey Organisation. Love, A., Crossey, L., Karlstrom, K., Hilton, D.R., Wolaver, B.D., Rousseau-Gueutin, P., 2009. Toward a new paradigm for the Great Artesian Basin: hydrologic mixing, partitioned sub basins, and mantle influences on groundwater quality. Geol. Soc. Am. Abstr. Programs 41 (7), 28.Mamyrin, B.A., Tolstikhin, I.N., 1984. Helium Isotopes in Nature. Elsevier, New York. Martel, D.J., Deak, J., Dovenyi, P., Horvath, F., O'Nions, R.K., Oxburgh, E.R., Stegena, L., Stute, M., 1989. Leakage of helium from the Pannonian Basin. Nature 342, 21–28. Matsumoto, T., Honda, M., McDougall, I., O'Reilly, S.Y., Norman, M., Yaxley, G., 2000. Noble gases in pyroxenites and metasomatised peridotites from the Newer Volcanics, southeastern Australia: implications for mantle metasomatism. Chem. Geol. 168, 49–73. McCue, 1990. Australia's large earthquakes and recent fault scarps. J. Struct. Geol. 12, 76l–766. Meixner, T.J., Gunn, P.J., Boucher, R.K., Yeats, A.N., Murray, L., Yeats, T.N., Richardson, L.M., Freares, R.A., 2000. South Australia. Explor. Geophys. 31, 24–32. Muksin, U., Bauer, K., Haberland, C., 2013. Seismic Vp and Vp/Vs structure of the geothermal area around Tarutung (North Sumatra, Indonesia) derived from local earthquake tomography. J. Volcanol. Geotherm. Res. 260, 27–42. Munoz, G., Bauer, K., Moeck, I., Schulze, A., Ritter, O., 2010. Exploring the Groß Schönebeck (Germany) geothermal site using a statistical joint interpretation of magnetotelluric and seismic tomography models. Geothermics 39 (1), 35–45. Newell, D.L., Crossey, L.J., Karlstrom, K.E., Fischer, T.P., Hilton, D.R., 2005. Continentalscale links between the mantle and groundwater systems of the western United States: evidence from travertine springs and regional He isotope data. GSA Today 15, 4–10. Norton, F.J., 1953. Helium diffusion through glass. J. Am. Ceram. Soc. 36, 90–96. http://dx. doi.org/10.1111/j.1151-2916. Ozima, M., Podosek, F.A., 2002. Noble Gas Geochemistry, 2nd ed. Cambridge University Press (286 pp.). Oxburgh, E.R., O'Nions, R.K., 1987. Helium loss, tectonics and the terrestrial heat budget. Science 237, 1583–1588. Pallasser, R.J., 2000. Recognising biodegradation in gas/oil accumulations through the δ 13C composition of gas components. Org. Geochem. 31, 1,363–1,373. Pik, R., Marty, B., 2008. Helium isotopic signature of modern and fossil fluids associated with the Corinth rift fault zone (Greece): implication for fault connectivity in the lower crust. Chem. Geol. 266, 67–75. Quigley, C., Cupperm, L., Sandiford, M., 2006. Quaternary faults of south-central Australia: palaeoseismicity, slip rates and origin. Australian Journal of Earth Sciences 53, 285–301. Radke, B., 2009. Hydrocarbon and geothermal prospectivity of sedimentary basins in Central Australia Warburton, Cooper, Pedirka, Galilee, Simpson and Eromanga Basins. Geoscience Australia Record 2009/25. Rihs, S., Condomines, M., Poidevin, J.L., 2000. Long-term behavior of continental hydrothermal systems: U-series study of hydrothermal carbonates from the French Massif Central (Allier Valley). Geochim. Cosmochim. Acta 64 (18), 3189–3199. Radke, B.M., Ferguson, J., Cresswell, R.G., Ransley, T.R., Habermehl, M.A., 2000. Hydrochemistry and Applied Hydrodynamics of the Cadna-owie-Hooray Aquifer, Great Artesian Basin, Australia, Bureau of Rural Sciences publication. Canberra, Commonwealth of Australia ISBN: 0 642 475547. Sano, Y., Fischer, T.P., 2012. The analysis and interpretation of noble gases in modern hydrothermal systems. In: Burnard, P. (Ed.), The Noble Gases as Geochemical Tracers, pp. 249–318. Sano, Y., Marty, B., 1995. Origin of carbon in fumarolic gas from island arc. Chem. Geol. 119, 265–274. Sano, Y.,Wakita, H., 1988. Precise measurement of helium isotopes in terrestrial gases. B. Chem. Soc. Jpn. 61, 1153–1157. Sass, J.H., Lachenbruch, A.H., 1978. Thermal Regime of the Australian Continental Crust, The Earth: Its Origin, Structure and Evolution. Academic Press pp. 301–351. Saygin, E., Kennett, B.L.N., 2010. Ambient noise tomography for the Australian Continent. Tectonophysics 481, 116–125. Saygin, E., Kennett, B.L.N., 2012. Crustal structure of Australia from ambient seismic noise tomography. J. Geophys. Res. 117, B01304. http://dx.doi.org/10.1029/2011JB008403. Saygin, E., McQueen, H., Hutton, L., Kennett, B.L.N., Lister, G., 2013. Structure of Mt Isa and surroundings from seismic ambient noise tomography. Aust. J. Earth Sci. 60, 707–718. Schoell, M., 1980. The hydrogen and carbon isotopic composition of methane from natural gases of various origins. Geochim. Cosmochim. Acta 44, 649–661. Schoell, M., 1988. Multiple origins of methane in the earth. Chem. Geol. 71, 1–10. Smith, J.W., Pallasser, R.J., 1996. Microbiological origin of Australian coalbed methane. AAPG Bull. 80, 891–897. Sun, X., 1997. Structural style of the Warburton Basin and control in the Cooper and Eromanga Basins, South Australia. Explor. Geophys. 28, 333–339. Torgersen, T., Clarke,W.B., 1985. Heliumaccumulation in groundwater, I: an evaluation of sources and the continental flux of crustal 4He in the Great Artesian Basin, Australia. Geochim. Cosmochim. Acta 49, 1211–1218. Torgersen, T., Habermehl, M.A., Clarke,W.B., 1992. Crustal helium fluxes and heat flow in the Great Artesian Basin, Australia. Chem. Geol. 102, 139–152. Torgersen, T., Clarke, W.B., Habermehl, M.A., 1987. Helium isotopic evidence for recent subcrustal volcanism in eastern Australia. Geophys. Res. Lett. 14, 1215–1218. Trull, T.W., Kurz, M.D., 1999. Isotopic fractionation accompanying helium diffusion in basaltic glass. J. Mol.Struct. 485/486, 555–567. Uysal, I.T., Feng, Y., Zhao, J.X., Altunel, E., Weatherley, D., Karabacak, V., Cengiz, O., Golding, S.D., Lawrence, M.G., Collerson, K.D., 2007. U-series dating and geochemical tracing of late Quaternary travertine in co-seismic fissures. Earth Planet. Sci. Lett. 257 (3–4), 450–462. Uysal, I.T., Feng, Y., Zhao, J.X., Isik, V., Nuriel, P., Golding, S.D., 2009. Hydrothermal CO2 degassing in seismically active zones during the late Quaternary. Chem. Geol. 265, 442–454.Uysal, I.T., Middleton, A.W., Ring, U., 2013. Understanding the active tectonics in Australia: implications of geothermal resources. Proceedings Australian Geothermal Energy Conferences 2013 Brisbane, Australia, 14–15 November 2013, pp. 99–101. Vasconcelos, P.M., Knesel, K.M., Cohen, B.E., Heim, J.A., 2008. Geochronology of the Australian Cenozoic: a history of tectonic and igneous activity, weathering, erosion, and sedimentation. Aust. J. Earth Sci. 55, 865–914. Waclawik, V.G., Lang, S.C., Krapf, C.B.E., 2008. Fluvial response to tectonic activity in an intra-continental dryland setting: The Neales River, Lake Eyre, Central Australia. Geomorphology 102, 179–188. Wellman, P., McDougall, I., 1974. Cainozoic igneous activity in eastern Australia. Tectonophysics 23, 49–65.Wellman, P., 1987. Eastern highlands of Australia; their uplift and erosion. BMR Journal of Australian Geology and Geophysics 10, 277–286. Weiss, R.F., 1974. Carbon dioxide in water and seawater: the solubility of a non-ideal gas. Marine Chemistry. 2, 203–215. http://dx.doi.org/10.1016/0304-4203(74) 90015-2. Wyborn, D., de Graaf, L., Davidson, S., Hann, S., 2004. Eastern Australian Basins Symposium II, PESA Special Publication, 423–430. Zhang, J., Quay, P.D., Wilbur, D.O., 1995. Carbon isotope fractionation during gas–water exchange and dissolution of CO2. Geochem. Cosmet. Acta 59 (1), 107–114.en
dc.description.obiettivoSpecifico2T. Tettonica attivaen
dc.description.journalTypeJCR Journalen
dc.description.fulltextrestricteden
dc.relation.issn0009-2541en
dc.relation.eissn1872-6836en
dc.contributor.authorItaliano, F.en
dc.contributor.authorYuce, G.en
dc.contributor.authorUysal, I. T.en
dc.contributor.authorGasparon, M.en
dc.contributor.authorMorelli, G.en
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Palermo, Palermo, Italiaen
dc.contributor.departmentHacettepe University, Department of Geological Engineering, Beytepe, Ankara, Turkeyen
dc.contributor.departmentThe Queensland Geothermal Energy Centre of Excellence, The University of Queensland, QLD, Australiaen
dc.contributor.departmentSchool of Earth Sciences, The University of Queensland, QLD, Australiaen
dc.contributor.departmentAustralian National Centre for Groundwater Research and Training, Australiaen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Palermo, Palermo, Italia-
crisitem.author.deptOsmangazi University – Department of Geology, Eskişehir Turkey-
crisitem.author.deptThe Queensland Geothermal Energy Centre of Excellence, The University of Queensland, QLD, Australia-
crisitem.author.deptSchool of Earth Sciences, The University of Queensland, QLD, Australia-
crisitem.author.deptGeostudi Astier S.r.l., Livorno, Italy-
crisitem.author.orcid0000-0002-9465-6398-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent05. General-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
australia_chemgeol_2014.pdf2.24 MBAdobe PDF
Show simple item record

WEB OF SCIENCETM
Citations 50

28
checked on Feb 7, 2021

Page view(s) 20

295
checked on Apr 13, 2024

Download(s) 50

65
checked on Apr 13, 2024

Google ScholarTM

Check

Altmetric