Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/9830
DC FieldValueLanguage
dc.contributor.authorallAiuppa, A.; DiSTeM, Università di Palermoen
dc.contributor.authorallTamburello, G.; DiSTeM, Università di Palermoen
dc.contributor.authorallDi Napoli, R.; DiSTeM, Università di Palermoen
dc.contributor.authorallCardellini, C.; Dipartimento di Scienze della Terra, Università di Perugiaen
dc.contributor.authorallChiodini, G.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
dc.contributor.authorallGiudice, G.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Palermo, Palermo, Italiaen
dc.contributor.authorallGrassa, F.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Palermo, Palermo, Italiaen
dc.contributor.authorallPedone, M.; DiSTeM, Università di Palermoen
dc.date.accessioned2015-06-09T10:40:13Zen
dc.date.available2015-06-09T10:40:13Zen
dc.date.issued2013-10-02en
dc.identifier.urihttp://hdl.handle.net/2122/9830en
dc.description.abstractThe fumarolic gas output has not been quantified for any of the currently deforming calderas worldwide, due to the lack of suitable gas flux sensing techniques. In view of resumption of ground uplift (since 2005) and the associated variations in gas chemistry, Campi Flegrei, in southern Italy, is one of the restless calderas where gas flux observations are especially necessary. Here we report the first ever obtained estimate of the Campi Flegrei fumarolic gas output, based on a set of MultiGAS surveys (performed in 2012 and 2013) with an ad-hoc-designed measurement setup. We estimate that the current Campi Flegrei fumarolic sulphur (S) flux is low, on the order of 1.5–2.2 tons/day, suggesting substantial scrubbing of magmatic S by the hydrothermal system. However, the fumarolic carbon dioxide (CO2) output is ∼460±160 tons/day (mean±SD), which is surprisingly high for a dormant volcano in the hydrothermal stage of activity, and results in a combined (fumaroles + soil) CO2 output of ∼1560 tons/day. Assuming magma to be the predominant source, we propose that the current CO2 output can be supplied by either (i) a large (0.6–4.6 km3), deeply stored (>7 km) magmatic source with low CO2 contents (0.05–0.1 wt%) or (ii) by a small to medium-sized (∼0.01–0.1 km3) but CO2-rich (2 wt%) magma, possibly stored at pressures of ∼100 to 120 MPa. Independent geophysical evidence (e.g., inferred from geodetic and gravity data) is needed to distinguish between these two possibilities.en
dc.language.isoEnglishen
dc.publisher.nameAmerican Geophysical Unionen
dc.relation.ispartofGeochemistry, Geophysics, Geosystemsen
dc.relation.ispartofseries/14(2013)en
dc.subjectCampi Flegreien
dc.subjectcalderasen
dc.subjectgas outputen
dc.titleFirst observations of the fumarolic gas output from a restless caldera: implications for the current period of unrest (2005-2013) at Campi Flegreien
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber4153–4169en
dc.identifier.URLhttp://onlinelibrary.wiley.com/doi/10.1002/ggge.20261/abstracten
dc.subject.INGV04. Solid Earth::04.08. Volcanology::04.08.01. Gasesen
dc.subject.INGV04. Solid Earth::04.08. Volcanology::04.08.03. Magmasen
dc.subject.INGV04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoringen
dc.subject.INGV04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniquesen
dc.subject.INGV04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risken
dc.identifier.doi10.1002/ggge.20261en
dc.relation.referencesAiuppa, A., C. Federico, G. Giudice, and S. Guerrieri (2005a), Chemical mapping of a fumarolic field: La Fossa Crater, Vulcano Island (Aeolian Islands, Italy), Geophys. Res. Lett., 32, L13309, doi:10.1029/2005GL023207. Aiuppa, A., S. Inguaggiato, A. J. S. McGonigle, M. O’Dwyer, C. Oppenheimer, M. J. Padgett, D. Rouwet, and M. Valenza (2005b), H2S fluxes from Mt. Etna, Stromboli and Vulcano (Italy) and implications for the global volcanic sulfur budget, Geochim. Cosmochim. Acta, 69(7), 1861–1871, doi:10.1016/j.gca.2004.09.018. Aiuppa, A., M. Burton, T. Caltabiano, G. Giudice, S. Guerrieri, M. Liuzzo, F. Mure`, and G. Salerno (2010), Unusually large magmatic CO2 gas emissions prior to a basaltic paroxysm, Geophys. Res. Lett., 37, L17303, doi:10.1029/2010GL043837. Aiuppa, A., M. Burton, P. Allard, T. Caltabiano, G. Giudice, S. Gurrieri, M. Liuzzo, and G. Salerno (2011a), First observational evidence for the CO2-driven origin of Stromboli’s major explosions, Solid Earth, 2, 135–142. Aiuppa, A., H. Shinohara, G. Tamburello, G. Giudice, M. Liuzzo, and R. Moretti (2011b), Hydrogen in the gas plume of an open-vent volcano, Mount Etna, Italy, J. Geophys. Res., 116, B10204, doi:10.1029/2011JB008461. Aiuppa, A., G. Giudice, M. Liuzzo, G. Tamburello, P. Allard, S. Calabrese, I. Chaplygin, A. J. S. McGonigle, and Y. Taran (2012), First volatile inventory for Gorely volcano, Kamchatka, Geophys. Res. Lett., 39, L06307, doi:10.1029/2012GL051177. Allard, P., A. Maiorani, D. Tedesco, G. Cortecci, and B. Turi (1991), Isotopic study of the origin of sulfur and carbon in Solfatara fumaroles, Campi Flegrei Caldera, J. Volcanol. Geotherm. Res., 48(1–2), 139–159, doi:10.1016/0377-0273(91)90039-3. Allard, P., J. Carbonelle, N. M etrich, H. Loyer, and P. Zettwoog (1994), Sulphur output and magma degassing budget of Stromboli volcano, Nature, 368, 326–330. Amoruso, A., L. Crescentini, and G. Berrino (2008), Simultaneous inversion of deformation and gravity changes in a horizontally layered half-space: Evidences for magma intrusion during 1982–1984 unrest at Campi Flegrei caldera (Italy), Earth Planet. Sci. Lett., 272, 181–188, doi:10.1016/j.epsl.2008.04.040. Arienzo, I., R. Moretti, L. Civetta, G. Orsi, P. Papale (2010), The feeding system of Agnano–Monte Spina eruption (Campi Flegrei, Italy) : Dragging the past into present activity and future scenarios, Chem. Geol., 270, 135–147. Badalamenti, B., et al. (1991), Special field workshop at Vulcano (Aeolian Islands) during summer 1988: Geochemical results, Acta Vulcanol., 1, 223–228. Barberi, F. and M. Carapezza (1997), The problem of volcanic unrests: The Campi Flegrei case history, in Monitoring and Mitigation of Volcanic Hazards, edited by R. Scarpa and R. I. Tilling, pp. 771–786, Springer, Berlin. Barberi, F., G. Corrado, F. Innocenti, and G. Luongo (1984), Phlegraean fields 1982–1984: Brief chronicle of a volcano emergency in a densely populated area, Bull. Volcanol., 47(2), 175–185. Battaglia, M., C. Troise, F. Obrizzo, F. Pingue, and G. De Natale (2006), Evidence for fluid migration as the source of deformation at Campi Flegrei caldera (Italy), Geophys. Res. Lett., 33, L01307, doi:10.1029/2005GL024904. Berrino, G., G. Corrado, G. Luongo, and B. Toro (1984), Ground deformation and gravity changes accompanying the 1982 Pozzuoli uplift, Bull. Volcanol., 47(2), 187–200. Bodnar, R. J., C. Cannatelli, B. De Vivo, A. Lima, H. E. Belkin, and A. Milia (2007), Quantitative model for magma degassing and ground deformation (bradyseism) at Campi Flegrei, Italy: Implications for future eruptions, Geology, 35, 791–794. Bonafede, M. (1991), Hot fluid migration: An efficient source of ground deformation: Application to the 1982–1985 crisis at Campi Flegrei-Italy, J. Volcanol. Geotherm. Res., 48, 187–198. Bianco, F., E. Del Pezzo, G. Saccorotti, and G. Ventura (2004), The role of hydrothermal fuids in triggering the July–August 2000 seismic swarm at Campi Flegrei, Italy: Evidence from seismological and mesostructural data, J. Volcanol. Geotherm. Res., 133, 229–246, doi:10.1016/ S0377-0273(03)00400-1. Burton, M. R., G. M. Sawyer, and D. Granieri (2013), Deep carbon emissions from volcanoes, Rev. Mineral. Geochem., 75, 323–354. Caliro, S., G. Chiodini, R. Moretti, R. Avino, D. Granieri, M. Russo, and J. Fiebig (2007), The origin of the fumaroles of La Solfatara (Campi Flegrei, south Italy), Geochim. Cosmochim. Acta, 71(12), 3040–3055, doi:10.1016/j.gca.2007.04.007. Caltabiano, T., M. Burton, S. Giammanco, P. Allard, N. Bruno, F. Mure`, and R. Romano (2004), Volcanic gas emissions from Mt. Etna, 1987–2000, in Mt. Etna: Volcano Laboratory, edited by A. Bonaccorso, S. Calvari, M. Coltelli, C. Del Negro, and S. Falsaperla, vol. 143, Geophys. Monogr. Ser., pp. 111–128, AGU, Washington, D. C. Cannatelli, C., A. Lima, R. J. Bodnar, B. De Vivo, J. D. Webster, and L. Fedele (2007), Geochemistry of melt inclusions from the Fondo Riccio and Minopoli 1 eruptions at Campi Flegrei (Italy), Chem. Geol., 237(3–4), 418–432. Chiodini, G., R. Cioni, L. Marini, and C. Panichi (1995), Origin of the fumarolic fluids of Vulcano Island, Italy and implication for volcanic surveillance, Bull. Volcanol., 57, 99–110. Chiodini, G., F. Frondini, C. Cardellini, D. Granieri, L. Marini, and G. Ventura (2001a), CO2 degassing and energy release at Solfatara Volcano, Campi Flegrei, Italy, J. Geophys. Res., 106, 16,213–16,221. Chiodini, G., L. Marini, and M. Russo (2001b), Geochemical evidence for the existence of high-temperature hydrothermal brines at Vesuvio Volcano, Italy, Geochim. Cosmochim. Acta, 65(13), 2129–2147. Chiodini, G., M. Todesco, S. Caliro, C. Del Gaudio, G. Macedonio, and M. Russo (2003), Magma degassing as a trigger of bradyseismic events; the case of Phlegrean Fields (Italy), Geophys. Res. Lett., 30(8), 1434, doi:10.1029/2002GL016790. Chiodini, G., C. Cardellini, A. Amato, E. Boschi, S. Caliro, F. Frondini, and G. Ventura (2004a), Carbon dioxide Earth degassing and seismogenesis in central and southern Italy, Geophys. Res. Lett., 31, L07615, doi:10.1029/ 2004GL01948. Chiodini, G., R. Avino, T. Brombach, S. Caliro, C. Cardellini, S. De Vita, F. Frondini, D. Granieri, E. Marotta, and G. Ventura (2004b), Fumarolic and diffuse soil degassing west of Mount Epomeo, Ischia, Italy, J. Volcanol. Geotherm. Res., 133(1–4), 291–309. doi:10.1016/j.jvolgeores.2003.02.00. Chiodini, G., S. Caliro, C. Cardellini, D. Granieri, R. Avino, A. Baldini, M. Donnini, and C. Minopoli (2010), Long-term variations of the Campi Flegrei, Italy, volcanic system as revealed by the monitoring of hydrothermal activity, J. Geophys. Res., 115, B03205, doi:10.1029/2008JB006258. Chiodini, G., R. Avino, S. Caliro, and C. Minopoli (2011a), Temperature and pressure gas geoindicators at the Solfatara fumaroles (Campi Flegrei), Ann. Geophys., 54, 151–160, doi:10.4401/ag-5002. Chiodini, G., S. Caliro, A. Aiuppa, R. Avino, D. Granieri, R. Moretti, and F. Parello (2011b), First 13C/12C isotopic characterisation of volcanic plume CO2, Bull. Volcanol., 73(5), 531–542. Chiodini, G., S. Caliro, P. De Martino, R. Avino, and F. Ghepardi (2012), Early signals of new volcanic unrest at Campi Flegrei caldera? Insights from geochemical data and physical simulations, Geology, 40, 943–946. Cipriani, F., P. Marianelli, and A. Sbrana (2008), Studio di una sequenza piroclastica del vulcano della Solfatara (Campi Flegrei), Atti Soc. Toscana Sci. Nat. Memor. Ser. A, 113, 1–6. D’Antonio, M. (2011), Lithology of the basement underlying the Campi Flegrei caldera: Volcanological and petrological constraints, J. Volcanol. Geotherm. Res., 200(1–2), 91–98. D’Auria, L., F. Giudicepietro, I. Aquino, G. Borriello, C. Del Gaudio, D. Lo Bascio, M. Martini, G. P. Ricciardi, P. Ricciolino, and C. Ricco (2011), Repeated fluid-transfer episodes as a mechanism for the recent dynamics of Campi Flegrei Caldera (1989–2010), J. Geophys. Res., 116, B04313, doi:10.1029/2010JB007837. Del Gaudio, C., I. Aquino, G. P. Ricciardi, C. Ricco, and R. Scandone (2010), Unrest episodes at Campi Flegrei: A reconstruction of vertical ground movements during 1905– 2009, J. Volcanol. Geotherm. Res., 195, 48–56,doi:10.1016/j.jvolgeores.2010.05.014. De Natale, G., F. Pingue, P. Allard, and A. Zollo (1991), Geophysical and geochemical modelling of the 1982–1984 unrest phenomena at Campi Flegrei caldera (southern Italy), J. Volcanol. Geotherm. Res., 48, 199–222. De Natale, G., C. Troise, and F. Pingue (2001), A mechanical fluid-dynamical model for ground movements at Campi Flegrei caldera, J. Geodyn., 32, 487–571. De Siena, L., E. Del Pezzo, and F. Bianco (2010), Seismic attenuation imaging of Campi Flegrei: Evidence of gas reservoirs, hydrothermal basins, and feeding systems, J. Geophys. Res., 115, doi:10.1029/2009JB006938. Deutsch, C. V., and A. G. Journel (1998), GSLIB: Geostatistical Software Library and Users Guide, 2nd ed., 369 pp., Oxford Univ. Press, New York. Di Renzo, V., I. Arienzo, L. Civetta, M. D’Antonio, S. Tonarini, M. A. Di Vito, and G. Orsi (2011), The magmatic feeding system of the Campi Flegrei caldera: Architecture and temporal evolution. Chem. Geol., 281, 227–241. Di Vito, M. A., R. Isaia, G. Orsi, J. Southon, S. De Vita, M. D’Antonio, L. Pappalardo, and M. Piochi (1999), Volcanism and deformation since 12000 years at the Campi Flegrei caldera (Italy). J. Volcanol. Geotherm. Res., 91, 221–246. D’Oriano, C., E. Poggianti, A. Bertagnini, R. Cioni, P. Landi, M. Polacci, and M. Rosi (2005), Changes in eruptive style during the A.D. 1538 Monte Nuovo eruption (Phlegrean Fields, Italy) : The role of syneruptive crystallization, Bull. Volcanol., 607, 601–621. Dvorak, J. J., and P. Gasparini (1991), History of earthquakes and vertical ground movement in Campi Flegrei caldera, Southern Italy : Comparison of precursory events to the A.D. 1538 eruption of Monte Nuovo and of activity since 1968, J. Volcanol. Geotherm. Res., 48, 77–92. Fourmentraux, C., N. M etrich, A. Bertagnini, and M. Rosi (2012), Crystal fractionation, magma step ascent, and syneruptive mingling: The Averno 2 eruption (Phlegraean Fields, Italy), Contrib. Mineral. Petrol., 163(6), 1121–1137. Gaeta, F. S., G. De Natale, F. Peluso, G. Mastrolorenzo, D. Castagnolo, C. Troise, F. Pingue, D. G. Mita, and S. Rossano (1998), Genesis and evolution of unrest episodes at Campi Flegrei caldera: The role of thermal fluid-dynamical processes in the geothermal system, J. Geophys. Res., 103(B9), 20,921–20,933. Gottsmann, J., and J. Marti (Eds.) (2008), Caldera volcanism: Analysis, modelling and response, Dev. Volcanol., 10, 492 pp. Gottsmann, J., A. Folch, and H. Rymer (2006), Unrest at Campi Flegrei: A contribution to the magmatic versus hydrothermal debate from inverse and finite element modelling, J. Geophys. Res., 111, B07203, doi:10.1029/2005JB003745. Hill, D. P. (2006), Unrest in Long Valley Caldera, California, 1978–2004, Geol. Soc. Spec. Publ., 269, 1–24. Kyser, T. K. (1986), Stable isotope variations in the mantle, Rev. Mineral., 16, 141–164. Lowenstern, J. B., R. B. Smith, and D. P. Hill (2006), Monitoring super-volcanoes: Geophysical and geochemical signals at Yellowstone and other large caldera systems, Philos. Trans. R. Soc. A, 364, 2055–2072. Mangiacapra, A., R. Moretti, M. Rutherford, L. Civetta, G. Orsi, and P. Papale (2008), The deep magmatic system of the Campi Flegrei caldera (Italy), Geophys. Res. Lett., 35, L21304, doi:10.1029/2008GL035550. Martelli, M., P. M. Nuccio, F. M. Stuart, R. Burgess, R. M. Ellam, and F. Italiano (2004), Helium strontium isotopic constrains on mantle evolution beneath the Roman Comagmatic Province, Italy, Earth Planet. Sci. Lett., 224,295–308. McKee, C. O., P. L. Lowenstein, P. De Saint Ours, B. Talai, I. Itikarai, and J. J. Mori (1984), Seismic and ground deformation crisis at Rabaul Caldera: Prelude to an eruption?, Bull. Volcanol., 47, 397–411. McKee, C. O., R. W. Johnson, P. L. Lowenstein, S. J. Riley, R. J. Blong, P. De Saint Ours, and B. Talai (1985), Rabaul Caldera, Papua New Guinea: Volcanic hazards, surveillance, and eruption contingency planning, J. Volcanol. Geotherm. Res., 23, 195–237. M etrich, N., and C. W. Mandeville (2010), Sulfur in magmas, Elements, 6, 81–86. M etrich, N., and P. Wallace (2008), Volatile abundances in basaltic magmas and their degassing paths tracked by melt inclusions, Rev. Mineral. Geochem., 69, 363–402.Moretti, R., I. Arienzo, L. Civetta, G. Orsi, and P. Papale (2013a), Multiple magma degassing sources at an explosive volcano, Earth Planet. Sci. Lett., 367, 95–104. Moretti, R., I. Arienzo, G. Orsi, L. Civetta, and M. D’Antonio (2013b), The deep plumbing system of Ischia: A physicochemical window on the fluid-saturated and CO2-sustained neapolitan Volcanism (Southern Italy), J. Petrol., 54,951–984, doi:10.1093/petrology/egt002. Morhange, C., N. Marriner, J. Laborel, T. Micol, and C. Oberlin (2006), Rapid sea-level movements and noneruptive crustal deformations in the Phlegrean Fields caldera, Italy, Geology, 43, 93–96. Mormone, A., M. Piochi, F. Bellatreccia, G. De Astis, R. Moretti, G. Della Ventura, A. Cavallo, and A. Mangiacapra (2011), A CO2 –rich magma source beneath the Phlegraen Volcanic District (Southern Italy) : Evidence from a melt inclusion study, Chem. Geol., 287, 66–80. Newhall, C. G., and D. Dzurisin (1988), Historical unrest at large calderas of the world, U.S. Geol. Surv. Bull., 1855,1108. Nuccio, P. M., A. Paonita, and F. Sortino (1999), Geochemical modeling of mixing between magmatic and hydrothermal gases: The case of Vulcano Island, Italy, Earth Planet. Sci. Lett., 167, 321–333. Oppenheimer, C. (2010), Ultraviolet sensing of volcanic sulfur emissions, Elements, 6, 87–92. Orsi, G., M. Di Vito, and S. De Vita (1996), The restless, resurgent Campi Flegrei nested caldera (Italy) : Constraints on its evolution and configuration, J. Volcanol. Geotherm. Res.,74, 179–214. Orsi, G., M. A. Di Vito, and R. Isaia (2004), Volcanic hazard assessment at the restless Campi Flegrei caldera, Bull. Volcanol., 66, 514–530. Orsi, G., M. A. Di Vito, J. Selva, and W. Marzocchi (2009), Long-term forecast of eruptive style and size at Campi Flegrei caldera (Italy), Earth Planet. Sci. Lett., 287, 265–276. Parks, M. M., et al. (2012), Evolution of Santorini Volcano dominated by episodic and rapid fluxes of melt from depth, Nat. Geosci., 5, 749–754. Piochi, M., G. Mastrolorenzo, and L. Pappalardo (2005), Magma ascent and eruptive processes from textural and compositional features of Monte Nuovo pyroclastic products, Campi Flegrei, Italy, Bull. Volcanol., 67, 663–678,doi:10.1007/s00445-005-0410-1. Piochi, M., M. Polacci, G. De Astis, A. Zanetti, A. Mangiacapra, R. Vannucci, and D. Giordano (2008), Texture and composition of pumices and scoriae from the Campi Flegrei caldera (Italy) : Implications on the dynamics of explosive eruptions, Geochem. Geophys. Geosyst., 9, Q03013, doi:10.1029/2007GC001746. Roach, A. L. (2005), The evolution of silicic magmatism in the post-caldera volcanism of the Phlegrean Fields, Italy, PhD Thesis, Brown Univ, Providence, Rhode Island. Roggensack, K., S. N. Williams, S. J. Schaefer, and R. A. Parnell Jr. (1996), Volatiles from the 1994 eruptions of Rabaul: Understanding large caldera systems, Science, 273, 490–493. Rosi, M., and R. Sbrana (Eds.) (1987), Phlegraean Fields, vol. 114, 175 pp., CNR, Quad. Ric. Sci., Rome. Rosi, M., A. Sbrana, and C. Principe (1983), The Phlegrean Fields: Structural evolution, volcanic history and eruptive mechanisms, J. Volcanol. Geotherm. Res., 17, 273–288. Rutherford, M. J. (2004), Experimental petrology studies, in Rapporto finale del progetto GNV 2001-03 n. 17 1Simulation of Eruptive Scenarios at Phlegrean Fields Based onField, Laboratory, and Numerical Studies, and Implications for Volcanic Hazard, edited by P. Papale, INGV-DPC. Shinohara, H. (2005), A new technique to estimate volcanic gas composition: Plume measurements with a portable multi-sensor system, J. Volcanol. Geotherm. Res., 143, 319–333. Symonds, R. B, T. M. Gerlach, and M. H. Reed (2001), Magmatic gas scrubbing: Implications for volcano monitoring, J. Volcanol. Geotherm. Res., 108, 303–341. Todesco, M., G. Chiodini, and G. Macedonio (2003), Monitoring and modelling hydrothermal fluid emission at La Solfatara (Phlegrean Fields, Italy). An interdisciplinary approach to the study of diffuse degassing, J. Volcanol. Geotherm. Res., 125, 57–79, doi:10.1016/S0377-0273(03)00089-1. Tonarini, S., W. P. Leeman, L. Civetta, M. D’Antonio, G. Ferrara, and A. Necco (2004), B/Nb and 111279 B systematics in the Phlegrean Volcanic District, Italy, J. Volcanol. Geotherm. Res., 133, 123–139, doi:10.1016/S0377- 0273(03)00394-1281 9. Trasatti, E., M. Bonafede, C. Ferrari, C. Giunchi, and G. Berrino (2011), On deformation sources in volcanic areas: Modeling the Campi Flegrei (Italy) 1982-84 unrest, Earth Planet. Sci. Lett., 306, 175–185. Troise, C., G. De Natale, and C. R. J. Kilburn, (Eds.) (2006), Mechanisms of Activity and Unrest at Large Calderas, Spec. Publ. 269, pp. 1–24, Geol. Soc., London. Troise, C., G. De Natale, F. Pingue, F. Obrizzo, P. De Martino, U. Tammaro, and E. Boschi (2007), Renewed ground uplift at Campi Flegrei caldera (Italy) : New insight on magmatic processes and forecast, Geophys. Res. Lett., 34, L03301, DOI: 10.1029/2006GL028545. Ukawa, U. M., E. Fujita, D. Hill, T. Kobayashi, J. Lowenstern, and C. Newhall (2003), New observations at Iwo-Jima caldera, Volcano Islands, Japan, Trans. Eur. Geophys. Union., Nice, France, Abstracts #14703. Vanorio, T., J. Virieux, P. Capuano, and G. Russo (2005), Three-dimensional seismic tomography from P wave and S wave micro-earthquake travel times and rock physics characterization of the Campi Flegrei caldera, J. Geophys. Res.,110, B03201, doi:10.1029/2004JB003102. Wicks, C. W., W. Thatcher, D. Dzurisin, and J. Svarc (2006), Uplift, thermal unrest and magma intrusion at Yellowstone caldera, Nature, 440, 72–75. Zollo, A., N. Maercklin, M. Vassallo, D. Dello Iacono, J. Virieux, and P. Gasparini (2008), Seismic reflections reveal a massive melt layer feeding Campi Flegrei caldera, Geophys. Res. Lett., 35, L12306, doi:10.1029/2008GL034242.en
dc.description.obiettivoSpecifico2V. Dinamiche di unrest e scenari pre-eruttivien
dc.description.journalTypeJCR Journalen
dc.description.fulltextrestricteden
dc.relation.eissn1525-2027en
dc.contributor.authorAiuppa, A.en
dc.contributor.authorTamburello, G.en
dc.contributor.authorDi Napoli, R.en
dc.contributor.authorCardellini, C.en
dc.contributor.authorChiodini, G.en
dc.contributor.authorGiudice, G.en
dc.contributor.authorGrassa, F.en
dc.contributor.authorPedone, M.en
dc.contributor.departmentDiSTeM, Università di Palermoen
dc.contributor.departmentDiSTeM, Università di Palermoen
dc.contributor.departmentDiSTeM, Università di Palermoen
dc.contributor.departmentDipartimento di Scienze della Terra, Università di Perugiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Palermo, Palermo, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Palermo, Palermo, Italiaen
dc.contributor.departmentDiSTeM, Università di Palermoen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Palermo, Palermo, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Bologna, Bologna, Italia-
crisitem.author.deptUniversità di Palermo, DiSTeM, Italy-
crisitem.author.deptDipartimento di fisica e Geologia di Perugia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Bologna, Bologna, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OE, Catania, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Palermo, Palermo, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Palermo, Palermo, Italia-
crisitem.author.orcid0000-0002-0254-6539-
crisitem.author.orcid0000-0001-7770-5226-
crisitem.author.orcid0000-0002-6175-3124-
crisitem.author.orcid0000-0002-0628-8055-
crisitem.author.orcid0000-0002-9410-4139-
crisitem.author.orcid0000-0001-5043-792X-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
Aiuppa et al., 2013 g cubed.pdfMain article10.38 MBAdobe PDF
Show simple item record

WEB OF SCIENCETM
Citations

57
checked on Feb 10, 2021

Page view(s) 10

335
checked on Apr 17, 2024

Download(s) 50

102
checked on Apr 17, 2024

Google ScholarTM

Check

Altmetric