Please use this identifier to cite or link to this item:
http://hdl.handle.net/2122/9710
DC Field | Value | Language |
---|---|---|
dc.contributor.authorall | Picchiani, M.; University of Rome Tor Vergata | en |
dc.contributor.authorall | Chini, M.; Luxembourg Institute of Science and Technology | en |
dc.contributor.authorall | Corradini, S.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione CNT, Roma, Italia | en |
dc.contributor.authorall | Merucci, L.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione CNT, Roma, Italia | en |
dc.contributor.authorall | Piscini, A.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione CNT, Roma, Italia | en |
dc.contributor.authorall | Del Frate, F.; University of Rome Tor Vergata | en |
dc.date.accessioned | 2015-06-03T07:26:43Z | en |
dc.date.available | 2015-06-03T07:26:43Z | en |
dc.date.issued | 2014 | en |
dc.identifier.uri | http://hdl.handle.net/2122/9710 | en |
dc.description.abstract | This work shows the potential use of neural networks in the characterization of eruptive events monitored by satellite, through fast and automatic classification of multispectral images. The algorithm has been developed for the MODIS instrument and can easily be extended to other similar sensors. Six classes have been defined paying particular attention to image regions that represent the different surfaces that could possibly be found under volcanic ash clouds. Complex cloudy scenarios composed by images collected during the Icelandic eruptions of the Eyjafjallajökull (2010) and Grimsvötn (2011) volcanoes have been considered as test cases. A sensitivity analysis on the MODIS TIR and VIS channels has been performed to optimize the algorithm. The neural network has been trained with the first image of the dataset, while the remaining data have been considered as independent validation sets. Finally, the neural network classifier’s results have been compared with maps classified with several interactive procedures performed in a consolidated operational framework. This comparison shows that the automatic methodology proposed achieves a very promising performance, showing an overall accuracy greater than 84%, for the Eyjafjallajökull event, and equal to 74% for the Grimsvötn event. | en |
dc.language.iso | English | en |
dc.relation.ispartof | Annals of Geophysics | en |
dc.relation.ispartofseries | fast track 2/57(2014) | en |
dc.subject | remote sensing; ash detection; neural networks; MODIS | en |
dc.title | Neural network multispectral satellite images classification of volcanic ash plumes in a cloudy scenario | en |
dc.type | article | en |
dc.description.status | Published | en |
dc.type.QualityControl | Peer-reviewed | en |
dc.subject.INGV | 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring | en |
dc.subject.INGV | 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques | en |
dc.subject.INGV | 05. General::05.02. Data dissemination::05.02.03. Volcanic eruptions | en |
dc.identifier.doi | 10.4401/ag-6638 | en |
dc.description.obiettivoSpecifico | 5V. Sorveglianza vulcanica ed emergenze | en |
dc.description.obiettivoSpecifico | 5IT. Osservazioni satellitari | en |
dc.description.journalType | JCR Journal | en |
dc.description.fulltext | open | en |
dc.contributor.author | Picchiani, M. | en |
dc.contributor.author | Chini, M. | en |
dc.contributor.author | Corradini, S. | en |
dc.contributor.author | Merucci, L. | en |
dc.contributor.author | Piscini, A. | en |
dc.contributor.author | Del Frate, F. | en |
dc.contributor.department | Istituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione ONT, Roma, Italia | en |
dc.contributor.department | Istituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione ONT, Roma, Italia | en |
dc.contributor.department | Istituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione ONT, Roma, Italia | en |
dc.contributor.department | University of Rome Tor Vergata | en |
item.languageiso639-1 | en | - |
item.cerifentitytype | Publications | - |
item.openairetype | article | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.fulltext | With Fulltext | - |
item.grantfulltext | open | - |
crisitem.department.parentorg | Istituto Nazionale di Geofisica e Vulcanologia | - |
crisitem.department.parentorg | Istituto Nazionale di Geofisica e Vulcanologia | - |
crisitem.department.parentorg | Istituto Nazionale di Geofisica e Vulcanologia | - |
crisitem.author.dept | Luxembourg Institute of Science and Technology (LIST) | - |
crisitem.author.dept | Istituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione ONT, Roma, Italia | - |
crisitem.author.dept | Istituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione ONT, Roma, Italia | - |
crisitem.author.dept | Istituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione ONT, Roma, Italia | - |
crisitem.author.orcid | 0000-0002-4120-200X | - |
crisitem.author.orcid | 0000-0001-9432-3246 | - |
crisitem.author.orcid | 0000-0001-6910-8800 | - |
crisitem.author.orcid | 0000-0001-5545-3611 | - |
crisitem.author.parentorg | Istituto Nazionale di Geofisica e Vulcanologia | - |
crisitem.author.parentorg | Istituto Nazionale di Geofisica e Vulcanologia | - |
crisitem.author.parentorg | Istituto Nazionale di Geofisica e Vulcanologia | - |
crisitem.classification.parent | 04. Solid Earth | - |
crisitem.classification.parent | 04. Solid Earth | - |
crisitem.classification.parent | 05. General | - |
Appears in Collections: | Article published / in press |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
Picchiani_6638_ok.pdf | 620.01 kB | Adobe PDF | View/Open |
Page view(s)
216
checked on Sep 14, 2024
Download(s) 50
128
checked on Sep 14, 2024