Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/9691
DC FieldValueLanguage
dc.contributor.authorallD'Agostino, N.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione CNT, Roma, Italiaen
dc.contributor.authorallEngland, P.; University of Oxforden
dc.contributor.authorallHunstad, I.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione CNT, Roma, Italiaen
dc.contributor.authorallSelvaggi, G.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione CNT, Roma, Italiaen
dc.date.accessioned2015-06-01T06:28:14Zen
dc.date.available2015-06-01T06:28:14Zen
dc.date.issued2014-05-09en
dc.identifier.urihttp://hdl.handle.net/2122/9691en
dc.description.abstractWe use velocity measurements from a network of continuous GPS sites spanning the Apennines of peninsular Italy to test the hypothesis that the active deformation of the region is explained by variations in gravitational potential energy of the lithosphere. The simple geometry of the mountain chain allows us to treat the deformation as two-dimensional, neglecting gradients of velocity along the strike of the chain. Under this assumption, the integral of gravitational potential energy per unit area of the lithosphere (GPE) in the direction perpendicular to the chain is related by a simple expression to the velocity in the same direction. We show that the observed velocities match this expression with an RMS misfit of 0.5 mm/yr. This agreement suggests that deformation of the Apennines reflects a balance, within the mountain chain itself, between lateral variations in GPE and the stresses required to deform the lithosphere. Forces arising from processes external to the belt are not required to explain the observations.en
dc.language.isoEnglishen
dc.publisher.nameElsevier Science Limiteden
dc.relation.ispartofEarth and planetary science lettersen
dc.relation.ispartofseries/397 (2014)en
dc.subjectApenninesen
dc.subjecttectonicsen
dc.subjectgravitational potential energyen
dc.subjectseismic hazarden
dc.titleGravitational potential energy and active deformation in the Apenninesen
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber121-132en
dc.subject.INGV04. Solid Earth::04.03. Geodesy::04.03.01. Crustal deformationsen
dc.identifier.doi10.1016/j.epsl.2014.04.013en
dc.relation.referencesAktug ̆, B., Nocquet, J.M., Cingöz, A., Parsons, B., Erkan, Y., England, P., Lenk, O., Gürdal, M.A., Kılıçog ̆lu, A., Akdeniz, H., Tekgül, A., 2009. Deformation of west- ern Turkey from a combination of permanent and campaign GPS data: limits to block-like behavior. J. Geophys. Res. 114 (B10), 1–22. Altamimi, Z., Collilieux, X., Legrand, J., Garayt, B., Boucher, C., 2007. ITRF2005: a new release of the international terrestrial reference frame based on time series of station positions and Earth orientation parameters. J. Geophys. Res. 112, B09401. Artyushkov, E.V., 1973. Stresses in the lithosphere caused by crustal thickness inho- mogeneities. J. Geophys. Res. 78, 7675–7708. Avallone, A., Selvaggi, G., D’Anastasio, E., D’Agostino, N., Pietrantonio, G., Riguzzi, F., Serpelloni, E., Anzidei, M., Casula, G., Cecere, G., D’Ambrosio, C., De Martino, P., Devoti, R., Falco, L., Mattia, M., Rossi, M., Obrizzo, F., Tammaro, U., Zarrilli, L., 2010. The RING network: improvement of a GPS velocity field in the central Mediterranean. Ann. Geophys. 53, 39–54. http://dx.doi.org/10.4401/ag-454. Bennett, R.A., Serpelloni, E., Hreinsdóttir, S., Brandon, M.T., Buble, G., Basic, T., Casale, G., Cavaliere, A., Anzidei, M., Marjonovic, M., Minelli, G., Molli, G., Montanari, A., 2012. Syn-convergent extension observed using the RETREAT GPS network, northern Apennines, Italy. J. Geophys. Res. 117 (B4), B04408. http://dx.doi.org/10.1029/2011JB008744. Bird, P., Piper, K., 1980. Plane-stress finite-element models of tectonic flow in south- ern California. Phys. Earth Planet. Inter. 21, 158–175. Blewitt, G., 2008. Fixed-point theorems of GPS carrier phase ambiguity resolution and their application to massive network processing: “Ambizap”. J. Geophys. Res. 113, B12410. http://dx.doi.org/10.1029/2008JB005736. Boncio, P., Lavecchia, G., Pace, B., 2004. Defining a model of 3D seismogenic sources for seismic hazard assessment applications: the case of central Apennines (Italy). J. Seismol. 8 (3), 407–425. Cavinato, G., De Celles, P., 1999. Extensional basins in the tectonically bimodal cen- tral Apennines fold-thrust belt, Italy: response to corner flow above a subduct- ing slab in retrograde motion. Geology 27 (10), 955–958. Copley, A., McKenzie, D., 2007. Models of crustal flow in the India–Asia collision zone. Geophys. J. Int. 169 (2), 683–698. Copley, A., Boait, F., Hollingsworth, J., Jackson, J., McKenzie, D., 2009. Subparallel thrust and normal faulting in Albania and the roles of gravitational potential en- ergy and rheology contrasts in mountain belts. J. Geophys. Res. 114 (B5), 1–12. D’Agostino, N., McKenzie, D., 1999. Convective support of long-wavelength topogra- phy in the Apennines (Italy). Terra Nova 11 (5), 228–233. D’Agostino, N., Avallone, A., Cheloni, D., D’Anastasio, E., Mantenuto, S., Selvaggi, G., 2008. Active tectonics of the Adriatic region from GPS and earthquake slip vec- tors. J. Geophys. Res. 113, 19. http://dx.doi.org/10.1029/2008JB005860. D’Agostino, N., Jackson, J., Dramis, F., Funiciello, R., 2001. Interactions between man- tle upwelling, drainage evolution and active normal faulting: an example from the central Apennines (Italy). Geophys. J. Int. 147, 475–497. D’Agostino, N., Mantenuto, S., D’Anastasio, E., Avallone, A., Barchi, M., Collettini, C., Radicioni, F., Stoppini, A., Fastellini, G., 2009. Contemporary crustal extension in the Umbria–Marche Apennines from regional CGPS networks and comparison between geodetic and seismic deformation. Tectonophysics 476 (1–2), 3–12. D’Agostino, N., Mantenuto, S., D’Anastasio, E., Giuliani, R., Mattone, M., Calcaterra, S., Gambino, P., Bonci, L., 2011. Evidence for localized active extension in the cen- tral Apennines (Italy) from Global Positioning System observations. Geology 39 (4), 291–294. http://dx.doi.org/10.1130/G31796.1. Dalmayrac, B., Molnar, P., 1981. Parallel thrust and normal faulting in Peru and con- straints on the state of stress. Earth Planet. Sci. Lett. 55 (3), 473–481. D’Anastasio, E., D’Agostino, N., Avallone, A., Blewitt, G., 2008. Present-day kinematics of the central Mediterranean plate boundary region from large GPS network analysis using the Ambizap algorithm. Eos Trans. AGU, Fall Meet. Suppl. 89 (53). Abstract G21A–0673. Davies, R., England, P., Parsons, B., Billiris, H., Paradissis, D., Veis, G., 1997. Geode- tic strain of Greece in the interval 1892–1992. J. Geophys. Res. 102 (B11), 24571–24588. Devoti, R., Esposito, A., Pietrantonio, G., Pisani, A., Riguzzi, F., 2011. Evidence of large scale deformation patterns from GPS data in the Italian subduction boundary. Earth Planet. Sci. Lett. 311, 230–241. http://dx.doi.org/10.1016/j.epsl.2011.09.034. Elliott, J.R., Walters, R.J., England, P.C., Jackson, J.A., Li, Z., Parsons, B., 2010. Ex- tension on the Tibetan plateau: recent normal faulting measured by InSAR and body wave seismology. Geophys. J. Int. 183, 505–535. http://dx.doi.org/ 10.1111/j.1365-246X.2010.04754.x. England, P., Houseman, G., 1985. The influence of lithospheric strength hetero- geneities on the tectonics of Tibet and surrounding regions. Nature 315, 297–301. England, P., Jackson, J., 1989. Active deformation of the continents. Annu. Rev. Earth Planet. Sci. 17, 197–226. England, P., Jackson, J.A., 2011. Uncharted seismic risk. Nat. Geosci. 4, 348–349. http://dx.doi.org/10.1038/ngeo1168. England, P., McKenzie, D., 1983. Correction to a thin viscous sheet model for conti- nental deformation. Geophys. J. R. Astron. Soc. 73, 523–532. England, P., Molnar, P., 1997. Active deformation of Asia: from kinematics to dynam- ics. Science 278, 647–650. Flesch, L., Haines, A., Holt, W., 2001. Dynamics of the India–Eurasia collision zone. J. Geophys. Res. 106 (B8), 16435–16460. Floyd, M.A., Billiris, H., Paradissis, D., Veis, G., Avallone, A., Briole, P., McClusky, S., Nocquet, J.-M., Parsons, B., England, P.C., 2010. A new velocity field for Greece: implications for the kinematics and dynamics of the Aegean. J. Geo- phys. Res. 115, B10403. Frank, F.C., 1972. Plate tectonics, the analogy with glacier flow and isostasy. In: Heard, H.C., Borg, I.Y., Carter, N.L., Raleigh, C.B. (Eds.), Flow and Fracture of Rocks. In: AGU Monograph, vol. 16. Amer. Geophys. Union, pp. 285–292. Galli, P., Galadini, F., Pantosti, D., 2008. Twenty years of paleoseismology in Italy. Earth-Sci. Rev. 88 (1–2), 89–117. Hammond, W.C., Blewitt, G., Kreemer, C., 2011. Block modeling of crustal deforma- tion of the northern Walker Lane and Basin and Range from GPS velocities. J. Geophys. Res. 116 (B4), B04402. Hatzfeld, D., Martinod, J., Bastet, G., Gautier, P., 1997. An analog experiment for the Aegean to describe the contribution of gravitational potential energy. J. Geophys. Res. 102 (B1), 649–660. Haxby, W.F., Turcotte, D.L., 1978. On isostatic geoid anomalies. J. Geophys. Res. 83 (B11), 5473–5478. Houseman, G., England, P., 1986. Finite strain calculations of continental deforma- tion 1. Method and general results for convergent zones. J. Geophys. Res. 91 (B3), 3651–3663. Hunstad, I., England, P., 1999. An upper bound on the rate of strain in the cen- tral Apennines, Italy, from triangulation measurements between 1869 and 1963. Earth Planet. Sci. Lett. 169, 261–267. Hunstad, I., Selvaggi, G., D’Agostino, N., England, P., Clarke, P., Pierozzi, M., 2003. Geodetic strain in peninsular Italy between 1875 and 2001. Geophys. Res. Lett. 30 (4), 1181. Huppert, H., 1982. The propagation of two-dimensional and axisymmetric viscous gravity currents over a rigid horizontal surface. J. Fluid Mech. 121, 43–58. Malvern, L., 1969. Introduction to the Mechanics of a Continuous Medium. Prentice- Hall. McKenzie, D., Nimmo, F., Jackson, J., Gans, P., Miller, E., 2000. Characteristics and consequences of flow in the lower crust. J. Geophys. Res. 105, 11029–11046. Meade, B.J., Hager, B.H., 2005. Block models of crustal motion in southern Cal- ifornia constrained by GPS measurements. J. Geophys. Res. 110, B03403. http://dx.doi.org/10.1029/2004JB003209. Meade, B.J., Hager, B.H., McClusky, S.C., Reilinger, R.E., Ergintav, S., Lenk, O., Barka, A., Özener, H., 2002. Estimates of seismic potential in the Marmara sea region from block models of secular deformation constrained by Global Positioning System measurements. Bull. Seismol. Soc. Am. 92 (1), 208–215. Mitrovica, J., Forte, A., 2004. A new inference of mantle viscosity based upon joint inversion of convection and glacial isostatic adjustment data. Earth Planet. Sci. Lett. 225 (1), 177–189. Molnar, P., Lyon-Caen, H., 1988. Some simple physical aspects of the support, struc- ture, and evolution of mountain belts. In: Clark Jr., S.P., Burchfiel, B.C., Suppe, J. (Eds.), Processes in Continental Lithospheric Deformation, vol. 218. The Geolog- ical Society of America, pp. 179–207. Molnar, P., Tapponnier, P., 1978. Active tectonics of Tibet. J. Geophys. Res. 83, 2648–2682. Molnar, P., Tapponnier, P., 1981. A possible dependence of tectonic strength on the age of the crust in Asia. Earth Planet. Sci. Lett. 52, 107–114. Molnar, P., England, P., Martinod, J., 1993. Mantle dynamics, uplift of the Tibetan plateau, and the Indian monsoon. Rev. Geophys. 31, 357–396. Parsons, B., Richter, F., 1980. A relation between the driving force and geoid anomaly associated with mid-ocean ridges. Earth Planet. Sci. Lett. 51 (2), 445–450. Piana Agostinetti, N., Amato, A., 2009. Moho depth and Vp/Vs ratio in penin- sular Italy from teleseismic receiver functions. J. Geophys. Res. 114, B06303. http://dx.doi.org/10.1029/2008JB005899. Pondrelli, S., Salimbeni, S., Ekström, G., Morelli, A., Gasperini, P., Vannucci, G., 2006. The Italian CMT dataset from 1977 to the present. Phys. Earth Planet. Inter. 159 (3–4), 286–303. Reilinger, R., McClusky, S., Vernant, P., Lawrence, S., Ergintav, S., Cakmak, R., Özener, H., Kadirov, F., Guliev, I., Stepanyan, R., Nadariya, M., Hahubia, G., Mahmoud, S., Sakr, K., ArRajehi, A., Paradissis, D., Al-Aydrus, A., Prilepin, M., Guseva, T., Evren, E., Dmitrotsa, A., Filikov, S.V., Gomez, F., Al-Ghazzi, R., Karam, G., 2006. GPS constraints on continental deformation in the Africa–Arabia–Eurasia con- tinental collision zone and implications for the dynamics of plate interactions. J. Geophys. Res. 111 (B10), B05411. Roberts, G., Michetti, A., 2004. Spatial and temporal variations in growth rates along active normal fault systems: an example from the Lazio–Abruzzo Apennines, central Italy. J. Struct. Geol. 26 (2), 339–376. Shaw, M., Pysklywec, R., 2007. Anomalous uplift of the Apennines and subsidence of the Adriatic: the result of active mantle flow? Geophys. Res. Lett. 34 (4), L04311. http://dx.doi.org/10.1029/2006GL028337. Shen, Z., Jackson, D., Ge, B., 1996. Crustal deformation across and beyond the Los Angeles basin from geodetic measurements. J. Geophys. Res. 101 (B12), 27957–27980. Siebert, L., Simkin, T., 2002. Volcanoes of the world: an illustrated catalog of Holocene volcanoes and their eruptions. Digital Information Series GVP-3. Smithsonian Institution. N. D’Agostino et al. / Earth and Planetary Science Letters 397 (2014) 121–132 131 132 N. D’Agostino et al. / Earth and Planetary Science Letters 397 (2014) 121–132 Sonder, L., England, P., 1986. Vertical averages of rheology of the continental litho- sphere: relation to thin sheet parameters. Earth Planet. Sci. Lett. 77 (1), 81–90. Stein, S., Geller, R.J., Liu, M., 2012. Why earthquake hazard maps often fail and what to do about it. Tectonophysics 562–563, 1–25. http://dx.doi.org/10.1016/j.tecto. 2012.06.047. Turcotte, D.L., 1982. Driving mechanisms of mountain building. In: Hsu ̋, K. (Ed.), Mountain Building Processes. Academic Press, London, pp. 129–139. Vergnolle, M., Calais, E., Dong, L., 2007. Dynamics of continental deformation in Asia. J. Geophys. Res. 112 (B11), 22. Wallace, L.M., Beavan, J., McCaffrey, R., Berryman, K., Denys, P., 2007. Balancing the plate motion budget in the South Island, New Zealand using GPS, geological and seismological data. Geophys. J. Int. 168 (1), 332–352. Whitehouse, P.L., England, P.C., Houseman, G.A., 2005. A physical model for the mo- tion of the Sierra Block relative to North America. Earth Planet. Sci. Lett. 237, 590–600. Williams, S.D.P., 2003. The effect of coloured noise on the uncertainties of rates estimated from geodetic time series. J. Geod. 76, 483–494. Zhang, P.-Z., 2013. A review on active tectonics and deep crustal processes of the western Sichuan region, eastern margin of the Tibetan Plateau. Tectono- physics 584, 7–22. http://dx.doi.org/10.1016/j.tecto.2012.02.021. Zumberge, J., Heflin, M., Jefferson, D., Watkins, M., Webb, F., 1997. Precise point po- sitioning for the efficient and robust analysis of GPS data from large network. J. Geophys. Res. 102, 5005–5017.en
dc.description.obiettivoSpecifico1T. Geodinamica e interno della Terraen
dc.description.journalTypeJCR Journalen
dc.description.fulltextrestricteden
dc.relation.issn0012-821Xen
dc.relation.eissn1385-013Xen
dc.contributor.authorD'Agostino, N.en
dc.contributor.authorEngland, P.en
dc.contributor.authorHunstad, I.en
dc.contributor.authorSelvaggi, G.en
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione ONT, Roma, Italiaen
dc.contributor.departmentUniversity of Oxforden
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione ONT, Roma, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione ONT, Roma, Italiaen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione ONT, Roma, Italia-
crisitem.author.deptCOMET, Department of Earth Sciences, University of Oxford, Oxford, UK.-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione ONT, Roma, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione ONT, Roma, Italia-
crisitem.author.orcid0000-0002-0444-6240-
crisitem.author.orcid0000-0002-3573-873X-
crisitem.author.orcid0000-0001-7589-2937-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
dagostino_etal_EPSL2014.pdfMain article2.23 MBAdobe PDF
Show simple item record

WEB OF SCIENCETM
Citations

25
checked on Feb 10, 2021

Page view(s)

331
checked on Apr 24, 2024

Download(s)

23
checked on Apr 24, 2024

Google ScholarTM

Check

Altmetric