Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/9422
DC FieldValueLanguage
dc.contributor.authorallCostanzo, A.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione CNT, Roma, Italiaen
dc.contributor.authorallMinasi, M.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione CNT, Roma, Italiaen
dc.contributor.authorallCasula, G.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Bologna, Bologna, Italiaen
dc.contributor.authorallMusacchio, M.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione CNT, Roma, Italiaen
dc.contributor.authorallBuongiorno, M. F.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione CNT, Roma, Italiaen
dc.date.accessioned2015-03-17T08:43:26Zen
dc.date.available2015-03-17T08:43:26Zen
dc.date.issued2015en
dc.identifier.urihttp://hdl.handle.net/2122/9422en
dc.description.abstractAbstract: The conservation of architectural heritage usually requires a multidisciplinary approach involving a variety of specialist expertise and techniques. Nevertheless, destructive techniques should be avoided, wherever possible, in order to preserve the integrity of the historical buildings, therefore the development of non-destructive and non-contact techniques is extremely important. In this framework, a methodology for combining the terrestrial laser scanning and the infrared thermal images is proposed, in order to obtain a reconnaissance of the conservation state of a historical building. The proposed case study is represented by St. Augustine Monumental Compound, located in the historical centre of the town of Cosenza (Calabria, South Italy). Adopting the proposed methodology, the paper illustrates the main results obtained for the building test overlaying and comparing the collected data with both techniques, in order to outline the capabilities both to detect the anomalies and to improve the knowledge on health state of the masonry building. The 3D model, also, allows to provide a reference model, laying the groundwork for implementation of a monitoring multisensor system based on the use of non-destructive techniques.en
dc.description.sponsorshipThe presented work has been carried out in the PON Monitoraggio in Area Sismica di SIstemi MOnumentali (MASSIMO) project framework, managed by the Italian National Institute of Geophysics and Volcanology (INGV) and funded by the Italian Ministry of Education, University and Researchen
dc.language.isoEnglishen
dc.publisher.nameMDPIen
dc.relation.ispartofSensorsen
dc.relation.ispartofseries/15(2015)en
dc.subjectterrestrial laser scanneren
dc.subjectIR thermographyen
dc.subjecthistorical buildings conservationen
dc.subjectpreventive diagnosisen
dc.titleCombined Use of Terrestrial Laser Scanning and IR Thermography Applied to a Historical Buildingen
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber194-213en
dc.identifier.URLhttp://www.mdpi.com/1424-8220/15/1/194en
dc.subject.INGV05. General::05.04. Instrumentation and techniques of general interest::05.04.99. General or miscellaneousen
dc.identifier.doi10.3390/s150100194en
dc.relation.referencesReferences 1. Yingdan, M. The Application of 3D Laser Scanning System for Monitoring and Measuring Building. Energy Procedia 2011, 13, 5162–5169. 2. Pesci, A.; Teza, G.; Bonali, E.; Casula, G.; Boschi, E. A laser scanning-based method for fast estimation of seismic-induced building deformations. ISPRS J. Photogramm. 2013, 79, 185–198. 3. Paoletti, D.; Ambrosini, D.; Sfarra, S.; Bisegna, F. Preventive thermographic diagnosis of historical buildings for consolidation. J. Cult. Hrit. 2013, 14, 116–121. 4. Alba, M.I.; Barazzetti, L.; Scaioni, M.; Rosina, E.; Previtali, M. Mapping Infrared Data on Terrestrial Laser Scanning 3D Models of Buildings. Remote Sens. 2011, 3, 1847–1870. 5. Maierhofer, Ch.; Krankenhagen, R.; Röllig, M.; Schlichting, J.; Schiller, M.; Seidl, Th.; Mecke, R.; Kalisch, U.; Hennen, Ch.; Meinhardt, J. Investigating historic masonry structures with a combination of active thermography and 3D laser scanner. Quant. Infrared. Thermogr. J. 2011, 8, 115–118. 6. Lagüela, S.; Martínez, J.; Armesto, J.; Arias, P. Energy efficiency studies through 3D laser scanning and thermographic technologies. Energ. Build. 2011, 6, 1216–1221. 7. Pfeifer, N.; Briese, C. Laser scanning: Principles and applications. In Proceedings of 3rd International Exhibition and Scientific Congress on Geodesy, Mapping, Geology, Geophysics, Novosibirsk, Russia, 25–27 April 2007. 8. Besl, P.J.; McKay, N.D. A Method for Registration of 3d-Shapes. IEEE Trans. Pattern Anal. Mach. Intell. 1992, 14, 239–256. 9. Rinaudo, F.; Guarnieri, A.; Vettore, A.; Visintini, D.; Bonora, V.; Tucci, G.; Bini, M.; Forlani, G. Sistemi a Scansione per l’architettura e il Territorio; Sacerdote, F., Tucci, G., Eds.; Alinea Editrice s.r.l.: Firenze, Italy, 2007. 10. JRC 3D Reconstructor—Operation manual. Geomatics & Excellence—A University of Brescia Spin Off Company: Brescia, Italy, 2012. Available online: http://www.gexcel.homeip.net/ Reconstructor/R_Manual/R_Manual_EN.pdf (accessed on 23 December 2014). 11. Maldague, X.P.V.; Streckert, H.H.; Trimm, M.W. Introduction to infrared and thermal testing: Part 1. Nondestructive testing. In Nondestructive Testing Handbook: Infrared and Thermal Testing, 3rd ed.; Maldague, X.P.V., Moore, P.O., Eds; ASNT Press: Columbus, OH, USA, 2001; Volume 3, p. 718. 12. Balaras, C.A.; Argiriou, A.A. Infrared thermography for building diagnostics. Energ. Build. 2002, 34, 171–183. 13. Eads, L.G.; Epperly, R.A.; Snell, J.R. Thermography. ASHRAE J. 2000, 42, 51–55. 14. Clark, M.R.; McCann, D.M.; Forde, M.C. Application of infrared thermography to the non-destructive testing of concrete and masonry bridges. NDT&E Int. 2003, 36, 265–275. 15. Infrared thermography for building Inspection R300SR-S—Operation Manual. NIPPON AVIONICS CO., LTD: Tokyo, Japan, 2012. 16. Thermographic Software NRG—Operation manual. SOFT PROJECT: Firenze, Italy, 2012. 17. Hart, J.M. A Practical Guide to Infra-Red Thermography for Building Surveys; Building Research Establishment: Watford, UK, 1991. 18. Barreira, E.; Freitas, V.P. Evaluation of building materials using infrared thermography. Constr. Build. Mater. 2007, 21, 218–224. 19. Bramson, M.A. Infrared Radiation, a Handbook for Applications; Plenum press: New York, NY, USA, 1986. 20. Wolfe, W.L.; Zissis, G.J. The Infrared Handbook. Office of Naval Research; Department of Navy: Washington, DC, USA, 1985. 21. Working Group. Rapporto Tecnico del Progetto di Ricerca PON—“Monitoraggio in Area Sismica di SIstemi Monumentali” (MASSIMO). Internal Technical Report, Personal communication, 2013. 22. Bonali, E.; Pesci, A.; Casula, G.; Boschi, E. Deformation of ancient buildings iferred by terrestrial laser scanning methodology: the Cantalovo Church case study (Nothern Italy). Archaeometry 2014, 56, 703–716. 23. Fregonese, L.; Barbieri, G.; Biolzi, L.; Bocciarelli, M.; Frigeri, A.; Taffurelli, L. Surveying and Monitoring for Vulnerability Assessment of an Ancient Building. Sensor 2013, 13, 9747–9773. 24. Casula, G.; Fais, S.; Ligas, P. Experimental application of 3-D Laser Scanning and acoustic techniques in assessing the quality of stones used in monumental structures. Int. J. Microstruct. Mater. Prop. 2009, 4, 45–56. 25. Fais, S.; Casula, G. Application of acoustic techniques in the evaluation of heterogeneous building materials. NDT&E Int. 2010, 43, 62–69. 26. Tsai, R.Y. An Efficient and Accurate Camera Calibration Technique for 3D Machine Vision. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Miami Beach, FL, USA, 22–26 June 1986. 27. Crisci, G.M.; la Russa, M.F.; le Pera, E.; Macchione, M.; Nava, G.; Schiavelli, T.; Smeriglio, A.; Ruffolo, S.A. Characterization of stone used in the S. Agostino Church (Cosenza): Commentary on the conservation state. In Procedings of “F.I.S.T. GeoItalia—Federazione Italiana Scienze della Terra”, Rimini, Italy, 9–11 September 2009.28. Freitas, S.S.; Freitas, V.P.; Barreira, E. Detection of façade plaster detachments using infrared thermography—A nondestructive technique. Constr. Build. Mater. 2014, 70, 80–87. 29. Porco, G.; Costanzo, A.; Minasi, M.; Montuori, A.; Casula, G.; Bianchi, M.G.; Luzi, G.; Bignami, C.; Stramondo, S. A Combined Use of NDT Techniques and Proximal Remote Sensing Tools for Monumental Heritage Monitoring. In Proceedings of the 11th European Conference on Non-Destructive Testing (ECNDT 2014), Prague, Czech Republic, 6–10 October 2014; pp. 641–653.en
dc.description.obiettivoSpecifico6A. Monitoraggio ambientale, sicurezza e territorioen
dc.description.journalTypeJCR Journalen
dc.description.fulltextopenen
dc.relation.issn1424-8220en
dc.contributor.authorCostanzo, A.en
dc.contributor.authorMinasi, M.en
dc.contributor.authorCasula, G.en
dc.contributor.authorMusacchio, M.en
dc.contributor.authorBuongiorno, M. F.en
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione ONT, Roma, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione ONT, Roma, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Bologna, Bologna, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione ONT, Roma, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione ONT, Roma, Italiaen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextopen-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione ONT, Roma, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione ONT, Roma, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Bologna, Bologna, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione ONT, Roma, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione ONT, Roma, Italia-
crisitem.author.orcid0000-0002-4549-5612-
crisitem.author.orcid0000-0001-7934-2019-
crisitem.author.orcid0000-0002-6235-1565-
crisitem.author.orcid0000-0002-6095-6974-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent05. General-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat
sensors-15-00194.pdfarticle13.59 MBAdobe PDFView/Open
Show simple item record

WEB OF SCIENCETM
Citations

49
checked on Feb 10, 2021

Page view(s) 50

1,093
checked on Apr 20, 2024

Download(s) 20

393
checked on Apr 20, 2024

Google ScholarTM

Check

Altmetric