Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/9368
DC FieldValueLanguage
dc.contributor.authorallMaucourant, S.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Catania, Catania, Italiaen
dc.contributor.authorallGiammanco, S.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Catania, Catania, Italiaen
dc.contributor.authorallGreco, F.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Catania, Catania, Italiaen
dc.contributor.authorallDorizon, S.; Laboratoire Atmospheres, Milieux, Observations Spatiales, Observatoire de St-Quentin-en-Yvelines, Versailles, Franceen
dc.contributor.authorallDel Negro, C.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Catania, Catania, Italiaen
dc.date.accessioned2015-02-24T14:44:04Zen
dc.date.available2015-02-24T14:44:04Zen
dc.date.issued2014-05-22en
dc.identifier.urihttp://hdl.handle.net/2122/9368en
dc.description.abstractA multidisciplinary approach integrating self-potential, soil temperature, heat flux, CO2 efflux and gravity gradiometry signals was used to investigate a relatively small fissure-related hydrothermal systemnear the summit of Mt. Etna volcano (Italy). Measurements were performed through two different surveys carried out at the beginning and at the end of July 2009, right after the end of the long-lived 2008–2009 flank eruption and in coincidencewith an increase in diffuse flank degassing related to a reactivation of the volcano, leading to the opening of a new summit vent (NSEC). The main goal was to use a multidisciplinary approach to the detection of hidden fractures in an area of evident near-surface hydrothermal activity. Despite the different methodologies used and the different geometry of the sampling grid between the surveys, all parameters concurred in confirming that the study area is crossed by faults related with the main fracture systems of the south flank of the volcano,where a continuous hydrothermal circulation is established. Results also highlighted that hydrothermal activity in this area changed both in space and in time. These changes were a clear response to variations in themagmatic system, notably tomigration of magma at various depth within the main feeder systemof the volcano. The results suggest that this specific area, initially chosen as the optimal test-site for the proposed approach, can be useful in order to get information on the potential reactivation of the summit craters of Mt. Etna.en
dc.description.sponsorshipIstituto Nazionale di Geofisica e Vulcanologia — Sezione di Catania — Osservatorio Etneoen
dc.language.isoEnglishen
dc.publisher.nameElsevier Science Limiteden
dc.relation.ispartofJournal of volcanology and geothermal researchen
dc.relation.ispartofseries/280 (2014)en
dc.subjectEtna volcanoen
dc.subjectHydrothermal systemen
dc.subjectFractures systemsen
dc.subjectMultidisciplinaryen
dc.titleGeophysical and geochemical methods applied to investigate fissure-related hydrothermal systems on the summit area of Mt. Etna volcano (Italy)en
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber111-125en
dc.subject.INGV03. Hydrosphere::03.04. Chemical and biological::03.04.06. Hydrothermal systemsen
dc.identifier.doi10.1016/j.jvolgeores.2014.05.014en
dc.relation.referencesAbu Shariah,M.M.I., 2009. Determination of cave geometry by using a geoelectrical resistivity inverse model. Eng. Geol. 105, 239–244. Acocella, V., Neri, M., 2003. What makes flank eruptions? The 2001 Mount Etna eruption and its possible triggeringmechanisms. Bull. Volcanol. 65, 517–529. http://dx.doi.org/ 10.1007/s00445-003-0280-3. Ahrens, L.H., 1954. The lognormal distribution of the elements (a fundamental lawof geochemistry and its subsidiary). Geochim. Cosmochim. Acta 5, 49–73. Aiuppa, A., Allard, P., D'Alessandro, W., Giammanco, S., Parello, F., Valenza, M., 2004. Magmatic gas leakage at Mount Etna (Sicily, Italy): relationships with the volcanotectonic structures, the hydrological pattern and the eruptive activity. In: Bonaccorso, A., Calvari, S., Coltelli, M., Del Negro, C., Falsaperla, S. (Eds.), Mt. Etna: Volcano Laboratory. American Geophysical Union, Washington, DC, pp. 129–145. http://dx.doi.org/10.1029/143GM09. Aizawaa, K., Yoshimuraa, R., Oshimana, N., Yamazakia, K., Utoa, T., Ogawab, Y., Tankb, S.B., Kandac, W., Sakanakad, S., Furukawad, Y., Hashimotoe, T., Uyeshimaf, M., Ogawaf, T., Shiozakig, I., Hursth, A.W., 2005. Hydrothermal system beneath Mt. Fuji volcano inferred from magnetotellurics and electric self-potential. Earth Planet. Sci. Lett. 235, 343–355. Allard, P., Carbonelle, J., Dajlevic, D., Le bronec, J., Morel, P., Robe, M.C., Maurenas, J.M., Faivre-Pierret, R., Martin, D., Sabroux, J.C., Zettwoog, P., 1991. Eruptive and diffuse emissions of CO2 from Mount Etna. Nature 351, 387–391. Alparone, S., Andronico, D., Giammanco, S., Lodato, L., 2004. A multidisciplinary approach to detect active pathways formagmamigration and eruption in a basaltic volcano: the upper southern flank of Mt. Etna (Sicily, Italy) before the 2001 eruption. J. Volcanol. Geotherm. Res. 136, 121–140. Aubert,M., 1999. Practical evaluation of steady heat discharge fromdormant active volcanoes: case study of Vulcarolo fissure (Mount Etna, Italy). J. Volcanol. Geotherm. Res. 92, 413–429. Aubert, M., Baubron, J.C., 1988. Identification of a hidden thermal fissure in a volcanic terrain using a combination of hydrothermal convection indicators and soil-atmosphere analysis. J. Volcanol. Geotherm. Res. 35, 217–225. Badalamenti, B., Bruno, N., Caltabiano, T., Di Gangi, F., Giammanco, S., Salerno, G., 2004. Continuous soil CO2 and discrete plume SO2 measurements atMt. Etna (Italy) during 1997–2000: a contribution to volcano monitoring. Bull. Volcanol. 66, 80–89. http:// dx.doi.org/10.1007/s00445-003-0305-y. Behncke, B., Neri, M., 2003a. The July–August 2001 eruption of Mt. Etna (Sicily). Bull. Volcanol. 65, 461–476. http://dx.doi.org/10.1007/s00445- 003-0274-1. Behncke, B., Neri, M., 2003b. Cycles and trends in the recent eruptive behaviour of Mount Etna (Italy). Can. J. Earth Sci. 40, 1405–1411. http://dx.doi.org/10.1139/E03-052. Borgia, A., Ferrari, L., Pasquarè, G., 1992. Importance of gravitational spreading in the tectonic and volcanic evolution of Mt. Etna. Nature 357, 231–234. Bousquet, J.C., Lanzafame, G., Paquin, C., 1988. Tectonic stresses and volcanism: in-situ stress measurements and neotectonics investigations in the Etna area (Italy). Tectonophysics 149, 219–231. Branca, S., Del Carlo, P., 2004. Eruptions of Mt. Etna during the past 3,200 years: a revised compilation integrating the historical and stratigraphic records. In: Bonaccorso, A., Calvari, S., Coltelli,M., Del Negro, C., Falsaperla, S. (Eds.),Mt. Etna: Volcano Laboratory. American Geophysical Union, Washington, DC, pp. 1–27. http://dx.doi.org/10.1029/ 143GM02. Bristow, K.L.,White, R.D., Kluitenberg, G.J., 1994. Comparison of single and dual probes for measuring soil thermal properties with transient heating. Aust. J. Soil Res. 32, 447–464. Bruijn, P.J., van Haneghem, I.A., Schenk, J., 1983. An improved nonsteady-state probe method for measurements in granular materials. Part 1: theory. High Temp. High Press. 15, 359–366.Bruno, N., Caltabiano, T., Giammanco, S., Romano, R., 2001. Degassing of SO2 and CO2 at Mount Etna (Sicily) as an indicator of pre-eruptive ascent and shallow emplacement of magma. J. Volcanol. Geotherm. Res. 110, 137–153. Cannata, A., Giudice, G., Gurrieri, S., Montalto, P., Alparone, S., Di Grazia, G., Favara, R., Gresta, S., Liuzzo, M., 2009. Relationship between soil CO2 flux and volcanic tremor at Mt. Etna: implications for magma dynamics. Environ. Earth Sci. http://dx.doi.org/ 10.1007/s12665-009-0359-z. Cappello, A., Bilotta, G., Neri, M., Del Negro, C., 2013. Probabilistic modeling of future volcanic eruptions atMount Etna. J. Geophys. Res. Solid Earth 118, 1925–1935. http://dx. doi.org/10.1002/jgrb.50190. Carapezza,M.L., Ricci, T., Ranaldi, M., Tarchini, L., 2009. Active degassing structures of Stromboli and variation in diffuse CO2 output related to the volcanic activity. J. Volcanol. Geotherm. Res. 182, 231–245. http://dx.doi.org/10.1016/j.jvolgeores.2008.08.006. Chester, D.K., Duncan, A.M., Guest, J.E., Kilburn, C.R.J., 1985. Mount Etna: the Anatomy of a Volcano. Chapman and Hall, London, (404 pp.). Chiodini, G., Cioni, R., Guidi, M., Raco, B., Marini, L., 1998. Soil CO2 flux measurements in volcanic and geothermal areas. Appl. Geochem. 13, 135–148. Chiodini, G., Caliro, S., Cardellini, C., Avino, R., Granieri, D., Schmidt, A., 2011. Geochemical evidence for and characterization of CO2 rich gas sources in the epicentral area of the Abruzzo 2009 earthquakes. Earth Planet. Sci. Lett. 304, 389–398. http://dx.doi.org/10. 1016/j.epsl.2011.02.016. Ciotoli, G., Etiope, G., Guerra, M., Lombardi, S., 1999. The detection of concealed faults in the Ofanto Basin using the correlation between soil–gas fracture surveys. Tectonophysics 301, 321–332. Corwin, R.F., Hoover, D.B., 1979. The self-potential method in geothermal exploration. Geophysics 44 (2), 226–245. Currenti, G., Del Negro, C., Johnston,M., Sasai, Y., 2007. Close temporal correspondence between geomagnetic anomalies and earthquakes during the 2002–2003 eruption of Etna volcano. J. Geophys. Res. 112, B09103. http://dx.doi.org/10.1029/2007JB005029. D'Alessandro,W., Giammanco, S., Parello, F., Valenza, M., 1997. CO2 output and δ13C(CO2) from Mount Etna as indicators of degassing of shallow asthenosphere. Bull. Volcanol. 58, 455–458. Del Negro, C., Currenti, G., Solaro, G., Greco, F., Pepe, A., Napoli, R., Pepe, S., Casu, F., Sansosti, E., 2013. Capturing the fingerprint of Etna volcano activity in gravity and satellite radar data. Sci. Rep. 3, 3089. http://dx.doi.org/10.1038/srep03089. Di Francesco, D., Talwani,M., 2002. Time lapse gravity gradiometry for reservoir monitoring. SEG Technical ProgramExpanded Abstracts 2002, pp. 787–790. http://dx.doi.org/ 10.1190/1.1817377. Dobson, F., Kneafsey, J., Hulen, J., Simmons, A., 2003. Porosity, permeability, and fluid flow in the Yellowstone geothermal system, Wyoming. J. Volcanol. Geotherm. Res. 123, 313–324. Ewing, S., 1939. The copper–copper sulfate half-cell formeasuring potentials in earth. Am. Gas Assoc. Proc. 624. Fajklewicz, Z.J., 1976. Gravity vertical gradient measurements for the detection of small geologic and anthropogenic forms. Geophysics 41, 1016–1030. Finizola, A., Sortino, F., Lénat, J.F., Valenza, M., 2002. Fluid circulation at Stromboli volcano (Aeolian Island, Italy), from self-potential and CO2 surveys. J. Volcanol. Geotherm. Res. 116 (1–2), 1–18. Finizola, A., Lénat, J.F., Macedo, O., Ramos, D., Thouret, J.C., Sortino, F., 2004. Fluid circulation and structural discontinuities inside Misti Volcano (Peru) inferred from selfpotential measurements. J. Volcanol. Geotherm. Res. 135, 343–360. Finizola, A., Revil, A., Rizzo, E., Piscitelli, S., Ricci, T., Morin, J., Angeletti, B., Mocochain, L., Sortino, F., 2006. Hydrogeological insights at Stromboli volcano (Italy) from geoelectrical, temperature, and CO2 soil degassing investigations. Geophys. Res. Lett. 33, L17304. http://dx.doi.org/10.1029/2006GL026842. Finizola, A., Aubert,M., Revil, A., Schütze, C., Sortino, F., 2009. Importance of structural history in the summit area of Stromboli during the 2002–2003 eruptive crisis inferred from temperature, soil CO2, self-potential, and electrical resistivity tomography. J. Volcanol. Geotherm. Res. 183, 213–227. http://dx.doi.org/10.1016/j.jvolgeores. 2009.04.002. Garduño, V.H., Neri, M., Pasquarè, G., Borgia, A., Tibaldi, A., 1997. Geology of NE rift of Mount Etna, Sicily (Italy). Acta Vulcanol. 9, 91–100. Gerlach, T.M., 1991. Etna's greenhouse pump. Nature 351, 352–353. http://dx.doi.org/10. 1038/351352a0. Giammanco, S., Bonfanti, P., 2009. Cluster analysis of soil CO2 data from Mt. Etna (Italy) reveals volcanic influences on temporal and spatial patterns of degassing. Bull. Volcanol. 71, 201–218. http://dx.doi.org/10.1007/s00445-008-0218-x. Giammanco, S., Gurrieri, S., Valenza, M., 1995. Soil CO2 degassing onMt. Etna (Sicily) during the period 1989–1993: discrimination between climatic and volcanic influences. Bull. Volcanol. 57, 52–60. Giammanco, S., Inguaggiato, S., Valenza, M., 1998. Soil and fumarole gases ofMount Etna: geochemistry and relations with volcanic activity. J. Volcanol. Geotherm. Res. 81, 297–310. Giammanco, S., Parello, F., Gambardella, B., Schifano, R., Pizzullo, S., Galante, G., 2007. Focused and diffuse effluxes of CO2 from mud volcanoes and mofettes south of Mt. Etna (Italy). J. Volcanol. Geotherm. Res. 165, 46–63. Giammanco, S., Bellotti, F., Groppelli, G., Pinton, A., 2010. Statistical analysis reveals spatial and temporal anomalies of soil CO2 efflux on Mount Etna volcano (Italy). J. Volcanol. Geotherm. Res. 194, 1–14. http://dx.doi.org/10.1016/j.jvolgeores.2010.04.006. Gottsmann, J., Camacho, A.G., Tiampo, K.F., Fernández, J., 2006. Spatiotemporal variations in vertical gravity gradients at the Campi Flegrei caldera (Italy): a case for source multiplicity during unrest? Geophys. J. Int. 167 (3), 1089–1096. http://dx.doi.org/ 10.1111/j.1365-246X.2006.03157.x. Granieri, D., Chiodini, G., Marzocchi, W., Avino, R., 2003. Continuous monitoring of CO2 soil diffuse degassing at Phlegraean Fields (Italy): influence of environmental and volcanic parameters. Earth Planet. Sci. Lett. 212, 167–179. Granieri, D., Avino, R., Chiodini, G., 2010. Carbon dioxide diffuse emission from the soil: ten years of observations at Vesuvio and Campi Flegrei (Pozzuoli), and linkages with volcanic activity. Bull. Volcanol. 72, 103–118. http://dx.doi.org/10.1007/ s00445-009-0304-8. Greco, F., Currenti, G., Del Negro, C., Napoli, R., Budetta, G., Fedi, M., Boschi, E., 2010. Spatiotemporal gravity variations to look deep into the southern flank of Etna volcano. J. Geophys. Res. 115, B11411. http://dx.doi.org/10.1029/2009JB006835. Greco, F., Currenti, G., D'Agostino, G., Germak, A., Napoli, R., Pistorio, A., Del Negro, C., 2012. Combining relative and absolute gravity measurements to enhance volcano monitoring at Mt Etna (Italy). Bull. Volcanol. 74, 1745–1756. http://dx.doi.org/10. 1007/s00445-012-0630-0. Guest, J.E.,Murray, J.B., 1979. An analysis of hazard from Mount Etna volcano. J. Geol. Soc. Lond. 136, 347–354. Hartvich, F., Valenta, J., 2011. The identification of faults using morphostructural and geophysical methods: a case study from Strašín cave site. Acta Geodyn. Geomater. 4 (164), 425–441 (8). Hashimoto, T., Tanaka, Y., 1995. A large self-potential anomaly at Unzen volcano, Shimabara Peninsula Kyushu Island, Japan. Geophys. Res. Lett. 22, 191–194. Heikes, R.R., Rue, R.W., 1961. Thermoelectricity: Science and Engineering. Inter-science, New York. Jackson, D.B., Kauahikaua, J., 1987. Regional self-potential anomalies at Kilauea Volcano. In: Decker, R.W., Weight, T.L., Stauffer, P.H. (Eds.), Volcanism in Hawaii, U.S. Geol. Surv. Prof. Paper, 1350, 2, 40, pp. 947–959. Johnston, M.J.S., Byerlee, J.D., Lockner, D., 2001. Rapid fluid disruption: a source for selfpotential anomalies on volcanoes. J. Geophys. Res. 106 (B3), 4327–4335. Jouniaux, L., Bernard, M.L., Zamora, M., Pozzi, J.P., 2000. Streaming potential in volcanic rocks from Mount Pelée. J. Geophys. Res. 105 (B4), 8391–8401. http://dx.doi.org/10. 1029/1999JB900435. Kieffer, G., 1983. L'évolution structurale de l'Etna (Sicile) et les modalités du controle tectonique et volcanotectonique de son activité. Faits et hypothéses aprés les éruptions de 1978 et 1979. Rev. Géol. Dyn. Géogr. Phys. 24, 129–152. Klusman, R.W., 1993. Soil Gas and Related Methods for Natural Resource Exploration. John Wiley and Sons, New York, (483 pp.). Klusman, R.W., Jaacks, J.A., 1987. Environmental influences upon mercury, radon and helium concentrations in soil gases at a site near Denver. Colorado. J. Geochem. Explor. 27, 259–280. Kuo, J.T., Ottaviani, M., Singh, S.K., 1969. Variations of vertical gravity gradient in New York City and Alpine, New Jersey. Geophysics 34, 235–248. Lanzafame, G., Neri, M., Acocella, V., Billi, A., Funiciello, R., Giordano, G., 2003. Structural features of the July–August 2001 Mount Etna eruption: evidence for a complex magma supply system. J. Geol. Soc. Lond. 160, 531–544. Lenat, J.F., 2007. Retrieving self-potential anomalies in a complex volcanic environment: an SP/elevation gradient approach. Near Surf. Geophys. 5, 161–170. Limpert, E., Staehl, W.A., Abbt, M., 2001. Log-normal distributions across the Sciences: keys and clues. Bioscience 51 (5), 341–352. Malengrau, B., Lénat, J.F., Bonneville, A., 1994. Cartographie et surveillance temporelle des anomalies de polarisation spontanée (PS) sur le Piton de La Fournaise. Bull. Soc. Geol. Fr. 165 (3), 221–232. Marty, B., Trull, T., Lussiez, P., Basile, I., Tanguy, J.-C., 1994. He, Ar, O, Sr and Nd isotope constraints on the origin and evolution of Mount Etna magmatism. Earth Planet. Sci. Lett. 126, 23–39. Mauri,G.,Williams-Jones, G., Saracco,G., Zurek, J.M., 2012. A geochemical and geophysical investigation of the hydrothermal complex of Masaya volcano, Nicaragua. J. Volcanol. Geotherm. Res. 227–228, 15–31. http://dx.doi.org/10.1016/j.jvolgeores.2012.02.003. Michel, S., Zlotnicki, J., 1998. Self-potential and magnetic surveying of La Fournaise volcano (Réunion Island): correlations with faulting, fluid circulation, and eruption. American Geophysical Union, Paper number 98JB00607. 0148-0227/98/98JB- 00607509.00. Monaco, C., Catalano, S., Cocina, O., De Guidi, G., Ferlito, C., Gresta, S., Musumeci, C., Tortorici, L., 2005. Tectonic control on the eruptive dynamics at Mt. Etna Volcano (Sicily) during the 2001 and 2002–2003 eruptions. J. Volcanol. Geotherm. Res. 144, 211–233. Mulargia, F., Tinti, S., Boschi, E., 1985. A statistical analysis of flank eruptions on Etna volcano. J. Volcanol. Geotherm. Res. 23, 263–272. Murray, J.B., Pullen, A.D., 1984. Three-dimensional model of the feeder conduit of the 1983 eruption of Mt. Etna volcano, from ground deformation measurements. Bull. Volcanol. 4 (2), 1145–1163 (47). Pecoraino, G., Giammanco, S., 2005. Geochemical characterization and temporal changes in parietal gas emissions at Mt. Etna (Italy) during the period July 2000–July 2003. Terr. Atmosph. Ocean Sci. 16 (4), 805–841.Pérez, N.M., Hernádez, P.A., Padrón, E., Cartagena, R., Olmos, R., Barahona, F., Melián, G., Salazar, P., López, D.L., 2006. Anomalous diffuse CO2 emission prior to the January 2002 short-term unrest at San Miguel Volcano, El Salvador, Central America. Pure Appl. Geophys. 163, 883–896. http://dx.doi.org/10.1007/s00024-006-0050-1. Poldini, E., 1939. Geophysical exploration by spontaneous polarization methods. Min. Mag. 60, 22–27. Rasà, R., Ferrucci, F., Gresta, S., Patanè, D., 1995. Etna: sistema di alimentazione profondo, assetto geostatico locale e bimodalità di funzionamento del vulcano. Proc. Nat. Symp. on Progetto-Etna 1993–1995: Stato di avanzamento delle ricerche, Rome, January 1995. Revil, A., Jardani, A., 2013. The Self-PotentialMethod: Theory and Applications in Environmental Geosciences. Cambridge University Press. Revil, A., Pezard, P.A., Glover, P.W.J., 1999a. Streaming potential in porous media 1. Theory of the zeta potential. J. Geophys. Res. 104 (B9), 20021–20031. Revil, A., Schwaeger, H., Cathles, L.M., Manhardt, P.D., 1999b. Streaming potential in porous media 2. Theory and application to geothermal systems. J. Geophys. Res. 104 (B9), 20033–20048. Revil, A., Naudet, V., Nouzaret, J., Pessel, M., 2003. Principles of electrography applied to self-potential electrokinetic sources and hydrogeological applications. Water Res. Res. 39 (5), 1114. http://dx.doi.org/10.1029/2001WR000916. Rittmann, A., 1973. Structure and evolution ofMount Etna. Phil. Trans. R. Soc. Lond. A 274, 5–16. Rogie, J.D., Kerrick, D.M., Sorey, M.L., Chiodini, G., Galloway, D.L., 2001. Dynamics of carbon dioxide emission at Mammoth Mountain, California. Earth Planet. Sci. Lett. 188, 535–541. Salerno, G., La Spina, A., Lopez, M., Caltabiano, T., Giammanco, S., Bruno, N., Longo, V., Murè, F., 2010. A new cycle of activity atMt. Etna (Sicily, Italy) during 2009, revealed from diffuse CO2 degassing and crater emissions of SO2 and halogens. Proceedings 6th meeting Cities on Volcanoes, Puerto de la Cruz, Tenerife (Spain), May 13 – June 4, 2010, 72. Schrott, L., Sass, O., 2008. Application of field geophysics in geomorphology: advances and limitations exemplified by case studies. Geomorphology 3 (1–2), 55–73. Siniscalchi, A., Tripaldi, S., Neri, M., Giammanco, S., Piscitelli, S., Balasco, M., Behncke, B., Magrì, C., Naudet, V., Rizzo, E., 2010. Insights into fluid circulation across the Pernicana Fault (Mt. Etna, Italy) and implications for flank instability. J. Volcanol. Geotherm. Res. 193, 137–142. http://dx.doi.org/10.1016/j.jvolgeores.2010.03.013. Soler, T., 1985. A matrix representation of the potential second-rank gradient tensor for local modeling. Geophys. J. R. Astron. Soc. 81, 363–379. Sugisaki, R., Ido, M., Takeda, H., Isobe, Y., Hayashi, Y.,Nakamura, N., Satake, H.,Mizutani, Y., 1983. Origin of hydrogen and carbon dioxide in fault gases and its relation to fault activity. J. Geol. 91 (3), 239–258. Telford, W.M., Geldart, L.P., Sheriff, R.E., 1990. Applied Geophysics, 2nd ed. Cambrige University Press, New-York, pp. 10–60. Tonani, F., Miele, G., 1991. Methods for measuring flow of carbon dioxide through soils in the volcanic setting. Technical report, Ist. Ann. Glob. Appl. C.N.R., Firenze, Italy. van Haneghem, I.A., Schenk, J., Boshoven, H.P.A., 1983. An improved nonsteady-state probe method for measurements in granular materials. Part II: experimental results. High Temp. High Press. 15, 367–374. van Loon, W.K.P., van Haneghem, I.A., Schenk, J., 1989. A new model for the non-steadystate probe method to measure thermal properties of porous media. Int. J. Heat Mass Transf. 32 (8), 1473–1481. Viveiros, F., Ferreira, T., Cabral Vieira, J., Silva, C., Gaspar, J.L., 2008. Environmental influences on soil CO2 degassing at Furnas and Fogo volcanoes (São Miguel Island, Azores archipelago). J. Volcanol. Geotherm. Res. 177, 883–893. Zablocki, C.J., 1976. Mapping thermal anomalies on an active volcano by the self-potential method, Kilauea, Hawaii. Proc. 2nd U.N. Symp. on the Development and Use of Geothermal Resources, San Francisco, 2, 1299. Zlotnicki, J., Nishida, Y., 2003. Review on morphological insights of self-potential anomalies on volcanoes. Surv. Geophys. 24 (4), 291–338. Zlotnicki, J., Boudon, G., Viodé, J.P., Delarue, J.F., Mille, A., Bruère, F., 1998. Hydrothermal circulation beneath Mount Pelee inferred by self-potential surveying. Structural and tectonic implications. J. Volcanol. Geotherm. Res. 84 (1–2), 73–91. Zlotnicki, J., Sasai, Y., Yvetot, P., Nishida, Y., Uyeshima,M., Fauquet, F., Utada, H., Takahashi, Y., Donnadieu, G., 2003. Resistivity and self-potential changes associated with volcanic activity: The July 8, 2000 Miyake-jima eruption (Japan). Earth Planet. Sci. Lett. 205, 139–154.en
dc.description.obiettivoSpecifico4V. Vulcani e ambienteen
dc.description.journalTypeJCR Journalen
dc.description.fulltextrestricteden
dc.relation.issn0377-0273en
dc.relation.eissn1872-6097en
dc.contributor.authorMaucourant, S.en
dc.contributor.authorGiammanco, S.en
dc.contributor.authorGreco, F.en
dc.contributor.authorDorizon, S.en
dc.contributor.authorDel Negro, C.en
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OE, Catania, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OE, Catania, Italiaen
dc.contributor.departmentLaboratoire Atmospheres, Milieux, Observations Spatiales, Observatoire de St-Quentin-en-Yvelines, Versailles, Franceen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OE, Catania, Italiaen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OE, Catania, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OE, Catania, Italia-
crisitem.author.deptLaboratoire Atmospheres, Milieux, Observations Spatiales, Observatoire de St-Quentin-en-Yvelines, Versailles, France-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OE, Catania, Italia-
crisitem.author.orcid0000-0003-2588-1441-
crisitem.author.orcid0000-0002-0265-5073-
crisitem.author.orcid0000-0001-5734-9025-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent03. Hydrosphere-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
Maucourant et al 2014 JVGR.pdfMain article3.48 MBAdobe PDF
Show simple item record

WEB OF SCIENCETM
Citations

11
checked on Feb 10, 2021

Page view(s) 50

346
checked on Apr 17, 2024

Download(s)

30
checked on Apr 17, 2024

Google ScholarTM

Check

Altmetric