Please use this identifier to cite or link to this item:
DC FieldValueLanguage
dc.contributor.authorallLe Corvec, N.; Lunar and Planetary Institute, USRA, Houston, Texas, USAen
dc.contributor.authorallWalter, T.; GFZ German Research Centre for Geosciences, Potsdamen
dc.contributor.authorallRuch, J.; King Abdullah University of Science and Technology, Thuwal, Saudi Arabiaen
dc.contributor.authorallBonforte, A.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Catania, Catania, Italiaen
dc.contributor.authorallPuglisi, G.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Catania, Catania, Italiaen
dc.description.abstractMount Etna volcano is subject to transient magmatic intrusions and flank movement. The east flank of the edifice, in particular, is moving eastward and is dissected by the Timpe Fault System. The relationship of this eastward motion with intrusions and tectonic fault motion, however, remains poorly constrained. Here we explore this relationship by using analogue experiments that are designed to simulate magmatic rift intrusion, flank movement, and fault activity before, during, and after a magmatic intrusion episode. Using particle image velocimetry allows for a precise temporal and spatial analysis of the development and activity of fault systems. The results show that the occurrence of rift intrusion episodes has a direct effect on fault activity. In such a situation, fault activitymay occur or may be hindered, depending on the interplay of fault displacement and flank acceleration in response to dike intrusion. Our results demonstrate that a complex interplaymay exist between an active tectonic fault system and magmatically induced flank instability. Episodes of magmatic intrusion change the intensity pattern of horizontal flank displacements andmay hinder or activate associated faults. We further compare our results with the GPS data of the Mount Etna 2001 eruption and intrusion. We find that syneruptive displacement rates at the Timpe Fault System have differed from the preeruptive or posteruptive periods, which shows a good agreement of both the experimental and the GPS data. Therefore, understanding the flank instability and flank stability at Mount Etna requires consideration of both tectonic and magmatic forcing.en
dc.publisher.nameAmerican Geophysical Unionen
dc.relation.ispartofJournal of geophysical research - solid earthen
dc.relation.ispartofseries/119 (2014)en
dc.subjectanalogue modelsen
dc.subjectflank dynamicsen
dc.titleExperimental study of the interplay between magmatic rift intrusion and flank instability with application to the 2001 Mount Etna eruptionen
dc.subject.INGV04. Solid Earth::04.03. Geodesy::04.03.08. Theory and Modelsen
dc.relation.referencesAcocella, V., and M. Neri (2005), Structural features of an active strike-slip fault on the sliding flank of Mt. Etna (Italy), J. Struct. Geol., 27(2), 343–355. Adam, J., J. L. Urai, B. Wieneke, O. Oncken, K. Pfeiffer, N. Kukowski, J. Lohrmann, S. Hoth, W. van der Zee, and J. Schmatz (2005), Shear localisation and strain distribution during tectonic faulting—New insights from granular-flow experiments and high-resolution optical image correlation techniques, J. Struct. Geol., 27(2), 283–301. Aloisi, M., M. Mattia, C. Monaco, and F. Pulvirenti (2011), Magma, faults, and gravitational loading at Mount Etna: The 2002–2003 eruptive period, J. Geophys. Res., 116, B05203, doi:10.1029/2010JB007909. Alparone, S., A. Bonaccorso, A. Bonforte, and G. Currenti (2013), Long-term stress–strain analysis of volcano flank instability: The eastern sector of Etna from 1980 to 2012, J. Geophys. Res. Solid Earth, 118, 5098–5108, doi:10.1002/jgrb.50364. Argnani, A., F. Mazzarini, C. Bonazzi, M. Bisson, and I. Isola (2013), The deformation offshore of Mount Etna as imaged by multichannel seismic reflection profiles, J. Volcanol. Geotherm. Res., 251(0), 50–64. Azzaro, R. (1999), Earthquake surface faulting at Mount Etna volcano (Sicily) and implications for active tectonics, J. Geodyn., 28(2–3), 193–213. Azzaro, R., D. Bella, L. Ferreli, A. Maria Michetti, F. Santagati, L. Serva, and E. Vittori (2000), First study of fault trench stratigraphy at Mt. Etna volcano, Southern Italy: Understanding Holocene surface faulting along the Moscarello fault, J. Geodyn., 29(3–5), 187–210. Azzaro, R., A. Bonforte, S. Branca, and F. Guglielmino (2013), Geometry and kinematics of the fault systems controlling the unstable flank of Etna volcano (Sicily), J. Volcanol. Geotherm. Res., 251(0), 5–15. Barreca, G., A. Bonforte, and M. Neri (2013), A pilot GIS database of active faults of Mt. Etna (Sicily): A tool for integrated hazard evaluation, J. Volcanol. Geotherm. Res., 251(0), 170–186. Behncke, B., and M. Neri (2003), The July–August 2001 eruption of Mt. Etna (Sicily), Bull. Volcanol., 65(7), 461–476. Bonaccorso, A. (1996), Dynamic inversion of ground deformation data for modelling volcanic sources (Etna 1991–93), Geophys. Res. Lett., 23(5), 451–454, doi:10.1029/96GL00418. Bonaccorso, A., and P. M. Davis (1993), Dislocation modelling of the 1989 dike intrusion into the flank of Mount Etna, Sicily, J. Geophys. Res., 98(B3), 4261–4268, doi:10.1029/92JB02135. Bonaccorso, A., F. Ferrucci, D. Patanè, and L. Villari (1996), Fast deformation processes and eruptive activity at Mount Etna (Italy), J. Geophys. Res., 101(B8), 17,467–17,480, doi:10.1029/96JB01151. Bonaccorso, A., M. Aloisi, and M. Mattia (2002), Dike emplacement forerunning the Etna July 2001 eruption modeled through continuous tilt and GPS data, Geophys. Res. Lett., 29(13), 1624, doi:10.1029/2001GL014397. Bonforte, A., and G. Puglisi (2003), Magma uprising and flank dynamics on Mt. Etna volcano, studied by GPS data (1994–1995), J. Geophys. Res., 108(B3), 2153, doi:10.1029/2002JB001845. Bonforte, A., and G. Puglisi (2006), Dynamics of the eastern flank of Mt. Etna volcano (Italy) investigated by a dense GPS network, J. Volcanol. Geotherm. Res., 153(3–4), 357–369. Bonforte, A., F. Guglielmino, M. Palano, and G. Puglisi (2004), A syn-eruptive ground deformation episode measured by GPS, during the 2001 eruption on the upper southern flank of Mt Etna, Bull. Volcanol., 66(4), 336–341. Bonforte, A., A. Bonaccorso, F. Guglielmino, M. Palano, and G. Puglisi (2008), Feeding system and magma storage beneath Mt. Etna as revealed by recent inflation/deflation cycles, J. Geophys. Res., 113, B05406, doi:10.1029/2007JB005334. Bonforte, A., S. Gambino, and M. Neri (2009), Intrusion of eccentric dikes: The case of the 2001 eruption and its role in the dynamics of Mt. Etna volcano, Tectonophysics, 471(1–2), 78–86. Bonforte, A., F. Guglielmino, M. Coltelli, A. Ferretti, and G. Puglisi (2011), Structural assessment of Mount Etna volcano from Permanent Scatterers analysis, Geochem. Geophys. Geosyst., 12, Q02002, doi:10.1029/2010GC003213. Bonforte, A., F. Guglielmino, and G. Puglisi (2013a), Interaction between magma intrusion and flank dynamics at Mt. Etna in 2008, imaged by integrated dense GPS and DInSAR data, Geochem. Geophys. Geosyst., 14, 2818–2835, doi:10.1002/ggge.20190. Bonforte, A., A. Carnazzo, S. Gambino, F. Guglielmino, F. Obrizzo, and G. Puglisi (2013b), A multidisciplinary study of an active fault crossing urban areas: The Trecastagni Fault at Mt. Etna (Italy), J. Volcanol. Geotherm. Res., 251(0), 41–49. Borgia, A. (1994), Dynamic basis of volcanic spreading, J. Geophys. Res., 99(B9), 17,791–17,804, doi:10.1029/94JB00578. Borgia, A., L. Ferrari, and G. Pasquare (1992), Importance of gravitational spreading in the tectonic and volcanic evolution of Mount Etna, Nature, 357(6375), 231–235. Bousquet, J. C., and G. Lanzafame (2001), New interpretation of the flank eruption fractures on Mt. Etna: Consequences for the tectonic framework of the volcano. Nouvelle interprétation des fractures des éruptions latérales de l’Etna: Conséquences pour son cadre tectonique, Bull. Soc. Geol. Fr., 172(4), 455–467. Briole, P., R. Gaulon, G. Nunnari, G. Puglisi, and J. C. Ruegg (1992), Measurements of ground movement on Mount Etna, Sicily: A systematic plan to record different temporal and spatial components of ground movement associated with active volcanism, Volcanic Seismol., 3, 120–129. Burchardt, S., and T. Walter (2010), Propagation, linkage, and interaction of caldera ring-faults: Comparison between analogue experiments and caldera collapse at Miyakejima, Japan, in 2000, Bull. Volcanol., 72(3), 297–308. Chiocci, F. L., M. Coltelli, A. Bosman, and D. Cavallaro (2011), Continental margin large-scale instability controlling the flank sliding of Etna volcano, Earth Planet. Sci. Lett., 305(1–2), 57–64. Currenti, G., C. Del Negro, G. Ganci, and D. Scandura (2008), 3D numerical deformation model of the intrusive event forerunning the 2001 Etna eruption, Phys. Earth Planet. Inter., 168(1–2), 88–96. Donnadieu, F., and O. Merle (1998), Experiments on the identation process during cryptodome intrusions: New insights into Mount St. Helens deformation, Geology, 26(1), 79–82. Froger, J. L., O. Merle, and P. Briole (2001), Active spreading and regional extension at Mount Etna imaged by SAR interferometry, Earth Planet. Sci. Lett., 187(3–4), 245–258. Houlie, N., P. Briole, A. Bonforte, and G. Puglisi (2006), Large scale ground deformation of Etna observed by GPS between 1994 and 2001, Geophys. Res. Lett., 33, L02309, doi:10.1029/2005GL024414. Hubbert, M. K. (1937), Theory of scale models as applied to the study of geologic structures, Geol. Soc. Am. Bull., 48(10), 1459–1519. Kieffer, G. (1985), Evolution structurale et dynamique d’un grand volcan, polygénique: Stades d’édification et activité actuelle de l’Etna (Sicile), 497 pp., Annales scientifiques de l’Université de Clermont-Ferrand II, Clermont-Ferrand, France. Lanzafame, G., and J. C. Bousquet (1997), The Maltese escarpment and its extension from Mt. Etna to the Aeolian Islands (Sicily): Importance and evolution of a lithosphere discontinuity, Acta Vulcanologica, 9(1–2), 113–120. LaVision (2002), StainMaster Manual for DaVis 6.2. LaVision GmbH, Goettingen. Le Corvec, N., and T. R. Walter (2009), Volcano spreading and fault interaction influenced by rift zone intrusions: Insights from analogue experiments analyzed with digital image correlation technique, J. Volcanol. Geotherm. Res., 183(3–4), 170–182. Lentini, F. (1982), The geology of the Mt. Etna basement, Mem. Soc. Geol. It, 23, 7–25. Lo Giudice, E., and R. Rasà (1992), Very shallow earthquakes and brittle deformation in active volcanic areas: The Eatnean region as an example, Tectonophysics, 202(2–4), 257–268. Lundgren, P., F. Casu, M. Manzo, A. Pepe, P. Berardino, E. Sansosti, R. Lanari, and P. Rosen (2004), ERS InSAR observations of Mt. Etna volcano: Magma inflation and radial spreading, paper presented at European Space Agency, (Special Publication) ESA SP. Marinoni, L. B. (2001), Crustal extension from exposed sheet intrusions: Review and method proposal, J. Volcanol. Geotherm. Res., 107(1–3), 27–46. McGuire, B. (1989), Simulating active volcanoes, Geol. Today, 5(3), 93–96. McGuire, W. J., and A. D. Pullen (1989), Location and orientation of eruptive fissures and feederdykes at Mount Etna; influence of gravitational and regional tectonic stress regimes, J. Volcanol. Geotherm. Res., 38(3–4), 325–344. McGuire, W. J., A. D. Pullen, and S. J. Saunders (1990), Recent dyke-induced large-scale block movement at Mount Etna and potential slope failure, Nature, 343(6256), 357–359. Merle, O., and A. Borgia (1996), Scaled experiments of volcanic spreading, J. Geophys. Res., 101(6), 13,805–13,817, doi:10.1029/95JB03736. Monaco, C., and L. Tortorici (2000), Active faulting in the Calabrian arc and eastern Sicily, J. Geodyn., 29(3–5), 407–424. Monaco, C., P. Tapponnier, L. Tortorici, and P. Y. Gillot (1997), Late Quaternary slip rates on the Acireale-Piedimonte normal faults and tectonic origin of Mt. Etna (Sicily), Earth Planet. Sci. Lett., 147(1–4), 125–139. Neri, M., V. Acocella, and B. Behncke (2004), The role of the Pernicana Fault System in the spreading of Mt. Etna (Italy) during the 2002–2003 eruption, Bull. Volcanol., 66(5), 417–430. Neri, M., V. Acocella, B. Behncke, V. Maiolino, A. Ursino, and R. Velardita (2005), Contrasting triggering mechanisms of the 2001 and 2002–2003 eruptions of Mount Etna (Italy), J. Volcanol. Geotherm. Res., 144(1–4), 235–255. Neri, M., F. Casu, V. Acocella, G. Solaro, S. Pepe, P. Berardino, E. Sansosti, T. Caltabiano, P. Lundgren, and R. Lanari (2009), Deformation and eruptions at Mt. Etna (Italy): A lesson from 15 years of observations, Geophys. Res. Lett., 36, L02309, doi:10.1029/2008GL036151. Norini, G., and V. Acocella (2011), Analogue modeling of flank instability at Mount Etna: Understanding the driving factors, J. Geophys. Res., 116, B07206, doi:10.1029/2011JB008216. Palano, M., G. Puglisi, and S. Gresta (2008), Ground deformation patterns at Mt. Etna from 1993 to 2000 from joint use of InSAR and GPS techniques, J. Volcanol. Geotherm. Res., 169(3–4), 99–120. Palano, M., S. Gresta, and G. Puglisi (2009), Time-dependent deformation of the eastern flank of Mt. Etna: After-slip or viscoelastic relaxation?, Tectonophysics, 473(3–4), 300–311. Patane, D., C. Chiarabba, O. Cocina, P. De Gori, M. Moretti, and E. Boschi (2002), Tomographic images and 3D earthquake locations of the seismic swarm preceding the 2001 Mt. Etna eruption: Evidence for a dyke intrusion, Geophys. Res. Lett., 29(10), 1497, doi:10.1029/2001GL014391. Patane, D., et al. (2003), Seismological constraints for the dike emplacement of July-August 2001 lateral eruption at Mt. Etna volcano, Italy, Ann. Geophys., 46(4), 599–608. Puglisi, G., and A. Bonforte (2004), Dynamics of Mount Etna Volcano inferred from static and kinematic GPS measurements, J. Geophys. Res., 109, B11404, doi:10.1029/2003JB002878. Puglisi, G., A. Bonforte, A. Ferretti, F. Guglielmino, M. Palano, and C. Prati (2008), Dynamics of Mount Etna before, during, and after the July-August 2001 eruption inferred from GPS and differential synthetic aperture radar interferometry data, J. Geophys. Res., 113, B06405, doi:10.1029/2006JB004811. Ramberg, H. (1981), Deformation structures in theory and experiments, Symp. Exp. Theory Geol., 103(1), 131, doi:10.1080/11035898109455225. Rasa, R., R. Azzaro, and O. Leonardi (1996), Aseismic creep on faults and flank instability at Mount Etna volcano, Sicily, in Volcano Instability on the Earth and Other Planets, Geol. Soc. Spec. Publ., vol. 110, pp. 179–192, Geological Society, London. Roche, O., T. H. Druitt, andO. Merle (2000), Experimental study of caldera formation, J. Geophys. Res., 105(B1), 395–416, doi:10.1029/1999JB900298. Rubin, A. M. (1995), Propagation of magma-filled cracks, Annu. Rev. Earth Planet. Sci., 23, 287–336. Ruch, J., V. Acocella, F. Storti, M. Neri, S. Pepe, G. Solaro, and E. Sansosti (2010), Detachment depth revealed by rollover deformation: An integrated approach at Mount Etna, Geophys. Res. Lett., 37, L16304, doi:10.1029/2010GL044131. Ruch, J., S. Pepe, F. Casu, G. Solaro, A. Pepe, V. Acocella, M. Neri, and E. Sansosti (2013), Seismo-tectonic behavior of the Pernicana Fault System (Mt Etna): A gauge for volcano flank instability?, J. Geophys. Res. Solid Earth, 118, 4398–4409, doi:10.1002/jgrb.50281. Rust, D., and M. Neri (1996), The boundaries of large-scale collapse on the flanks of Mount Etna, Sicily, in Volcano Instability on the Earth and Other Planets, Geol. Soc. Spec. Publ., vol. 110, pp. 193–208, Geological Society, London. Schellart, W. P. (2000), Shear test results for cohesion and friction coefficients for different granular materials: Scaling implications for their usage in analogue modelling, Tectonophysics, 324(1–2), 1–16. Siebert, L. (1992), Threats from debris avalanches, Nature, 356(6371), 658–659. Solaro, G., V. Acocella, S. Pepe, J. Ruch, M. Neri, and E. Sansosti (2010), Anatomy of an unstable volcano from InSAR: Multiple processes affecting flank instability at Mt. Etna, 1994–2008, J. Geophys. Res., 115, B10405, doi:10.1029/2009JB000820. ten Grotenhuis, S. M., S. Piazolo, T. Pakula, C. W. Passchier, and P. D. Bons (2002), Are polymers suitable rock analogs?, Tectonophysics, 350(1), 35-47. Tibaldi, A., and G. Groppelli (2002), Volcano-tectonic activity along structures of the unstable NE flank of Mt. Etna (Italy) and their possible origin, J. Volcanol. Geotherm. Res., 115(3–4), 277–302. Van Wyk De Vries, B., and O. Merle (1998), Extension induced by volcanic loading in regional strike-slip zones, Geology, 26(11), 983–986. Van Wyk De Vries, B., and P. W. Francis (1997), Catastrophic collapse at stratovolcanoes induced by gradual volcano spreading, Nature, 387(6631), 387–390. Vidal, N., and O. Merle (2000), Reactivation of basement faults beneath volcanoes: A new model of flank collapse, J. Volcanol. Geotherm. Res., 99(1–4), 9–26. Walter, T. R., and V. R. Troll (2003), Experiments on rift zone evolution in unstable volcanic edifices, J. Volcanol. Geotherm. Res., 127(1–2), 107–120. Walter, T. R., V. Acocella, M. Neri, and F. Amelung (2005), Feedback processes between magmatism and E-flank movement at Mt. Etna (Italy) during the 2002–2003 eruption, J. Geophys. Res., 110, B10205, doi:10.1029/2005JB003688. White, D. J., W. A. Take, and M. D. Bolton (2003), Soil deformation measurement using particle image velocimetry (PIV) and photogrammetry, Geotechnique, 53(7), 619–631.en
dc.description.obiettivoSpecifico1V. Storia e struttura dei sistemi vulcanicien
dc.description.journalTypeJCR Journalen
dc.contributor.authorLe Corvec, N.en
dc.contributor.authorWalter, T.en
dc.contributor.authorRuch, J.en
dc.contributor.authorBonforte, A.en
dc.contributor.authorPuglisi, G.en
dc.contributor.departmentLunar and Planetary Institute, USRA, Houston, Texas, USAen
dc.contributor.departmentGFZ German Research Centre for Geosciences, Potsdamen
dc.contributor.departmentKing Abdullah University of Science and Technology, Thuwal, Saudi Arabiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OE, Catania, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OE, Catania, Italiaen
item.fulltextWith Fulltext-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth- and Planetary Institute, Universities Space Research Association, 3600 Bay Area Boulevard, Houston, Texas 77058, USA- Physics of the Earth, Helmholtz-Zentrum Potsdam, Deutsches, GeoForschungsZentrum (GFZ), Telegrafenberg, 14473 Potsdam, Germany- Scienze Geologiche, Università Roma Tre, Roma, Italy- Nazionale di Geofisica e Vulcanologia (INGV), Sezione OE, Catania, Italia- Nazionale di Geofisica e Vulcanologia (INGV), Sezione OE, Catania, Italia- Nazionale di Geofisica e Vulcanologia- Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
LeCorvec_et_al_JGR_2014.pdf3.25 MBAdobe PDF
Show simple item record


checked on Feb 10, 2021

Page view(s) 20

checked on May 16, 2022

Download(s) 50

checked on May 16, 2022

Google ScholarTM