Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/9268
DC FieldValueLanguage
dc.contributor.authorallDoglioni, C.; La Sapienza Universitàen
dc.contributor.authorallBarba, S.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.authorallCarminati, E.; La Sapienza Universitàen
dc.contributor.authorallRiguzzi, F.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione CNT, Roma, Italiaen
dc.date.accessioned2015-01-16T11:41:06Zen
dc.date.available2015-01-16T11:41:06Zen
dc.date.issued2014en
dc.identifier.urihttp://hdl.handle.net/2122/9268en
dc.description.abstractThe fault activation (fault on) interrupts the enduring fault locking (fault off) and marks the end of a seismic cycle in which the brittle-ductile transition (BDT) acts as a sort of switch. We suggest that the fluid flow rates differ during the different periods of the seismic cycle (interseismic, pre-seismic, coseismic and post-seismic) and in particular as a function of the tectonic style. Regional examples indicate that tectonic-related fluids anomalies depend on the stage of the tectonic cycle and the tectonic style. Although it is difficult to model an increasing permeability with depth and several BDT transitions plus independent acquicludes may occur in the crust, we devised the simplest numerical model of a fault constantly shearing in the ductile deeper crust while being locked in the brittle shallow layer, with variable homogeneous permeabilities. The results indicate different behaviors in the three main tectonic settings. In tensional tectonics, a stretched band antithetic to the normal fault forms above the BDT during the interseismic period. Fractures close and fluids are expelled during the coseismic stage. The mechanism reverses in compressional tectonics. During the interseismic stage, an over-compressed band forms above the BDT. The band dilates while rebounding in the coseismic stage and attracts fluids locally. At the tip lines along strike-slip faults, two couples of subvertical bands show different behavior, one in dilation/compression and one in compression/dilation. This deformation pattern inverts during the coseismic stage. Sometimes a pre-seismic stage in which fluids start moving may be observed and could potentially become a precursor.en
dc.language.isoEnglishen
dc.publisher.nameChina University of Geosciencesen
dc.relation.ispartofGeoscience Frontiersen
dc.relation.ispartofseries/5 (2014)en
dc.subjectFault activationen
dc.subjectBrittle-ductile transitionen
dc.subjectEarthquakeen
dc.subjectFluids responseen
dc.titleFault on–off versus coseismic fluids reactionen
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber767–780en
dc.subject.INGV04. Solid Earth::04.06. Seismology::04.06.01. Earthquake faults: properties and evolutionen
dc.identifier.doi10.1016/j.gsf.2013.08.004en
dc.relation.referencesAdinolfi, F.R., Falgiani, A., Manetta, M., Marchetti, A., Parisse, B., Petaccia, R., Petitta, M., Rusi, S., Sciannamblo, D., Spizzico, M., Tallini, M., 2009. Hydrogeological and Hydrogeochemical Effects on the Gran Sasso Carbonate Groundwater Due to the L’Aquila Earthquake (April 6, 2009). Geoitalia, Rimini. Allen, P.A., Allen, J.R., 1990. Basin Analysis: Principles and Applications. Blackwell Scientific Publications, Cambridge, 451 pp. Amoruso, A., Crescentini, L., Petitta, M., Rusi, S., Tallini, M., 2011. Impact of the 6 April 2009 L’Aquila earthquake on groundwater flow in the Gran Sasso carbonate aquifer. Central Italy. Hydrological Processes 25, 1754e1764. http:// dx.doi.org/10.1002/hyp.7933. Aydin, A., 2000. Fractures, faults, and hydrocarbon entrapment, migration and flow. Marine and Petroleum Geology 17, 797e814. Bodvarsson, G., 1970. Confined fluids as strain meters. Journal of Geophysical Research 75, 2711e2718. Bonini, M., 2007. Interrelations of mud volcanism, fluid venting, and thrustanticline folding: examples from the external northern Apennines (Emilia- Romagna, Italy). Journal of Geophysical Research 112, B08413. http://dx.doi.org/ 10.1029/2006JB004859. Bosl, W.J., Nur, A., 2002. Aftershocks and pore fluid diffusion following the 1992 Landers earthquake. Journal of Geophysical Research 107 (B12), 2366. Cakir, Z., Akoglu, A.M., Belabbes, S., Ergintav, S., Meghraoui, M., 2005. Creeping along the Ismetpasa section of the North Anatolian fault (Western Turkey): rate and extent from InSAR convection. Earth and Planetary Science Letters 238, 225e234. http://dx.doi.org/10.1016/j.epsl.2005.06.044. Carminati, E., Vadacca, L., 2010. 2D and 3D numerical simulations of the stress field at the thrust-front of the Northern Apennines, Italy. Journal of Geophysical Research 115, B12425. http://dx.doi.org/10.1029/2010JB007870. Cattin, R., Avouac, J.P., 2000. Modeling mountain building and the seismic cycle in the Himalaya of Nepal. Journal of Geophysical Research 105 (B6), 13,389e13,407. Chia, Y., Chiu, J.J., Chiang, Y.-H., Lee, T.-P., Liu, C.-W., 2008. Spatial and temporal changes of groundwater level induced by thrust faulting. PAGEOPH 165, 5e16. Cox, S.F., 1995. Faulting processes at high fluid pressures e an example of fault valve behavior from the Wattle Gully Fault, Victoria, Australia. Journal of Geophysical Research 100, 12841e12859. Deming, D., 1994. Fluid flow and heat transport in the upper continental crust. In: Parnell, J. (Ed.), Geofluids: Origin, Migration and Evolution of Fluids in Sedimentary Basins, Geological Society Special Publication, vol. 78, pp. 27e42. Di Luccio, F., Ventura, G., Di Giovambattista, R., Piscini, A., Cinti, F.R., 2010. Normal faults and thrusts re-activated by deep fluids: the 6 April 2009 Mw 6.3 L’Aquila earthquake, central Italy. Journal of Geophysical Research 115 (B06315), 15. http://dx.doi.org/10.1029/2009JB007190. Doglioni, C., Barba, S., Carminati, E., Riguzzi, F., 2011. Role of the brittle-ductile transition on fault activation. Physics of the Earth and Planetary Interiors 184, 160e171. http://dx.doi.org/10.1016/j.pepi.2010.11.005. Eichhubl, P., Boles, J.R., 2000. Focusedfluid flowalong faults in theMonterey Formation, coastal California. Geological Society of America Bulletin 112 (11), 1667e1679. Esposito, E., Pece, R., Porfido, S., Tranfaglia, G., 2001. Hydrological anomalies connected to earthquakes in southern Apennines (Italy). Natural Hazards and Earth System Sciences 1, 137e144 (European Geophysical Society). Harris, R.A., Sawyer, R.K., Audley-Charles, M.G., 1998. Collisional melange development: geologic associations of active melange-forming processes with exhumed melange facies in thewestern Banda orogen, Indonesia. Tectonics 17 (3), 458e480. Hobbs, B., Ord, A., 1988. Plastic instabilities: implications for the origin of intermediate and deep focus earthquakes. Journal of Geophysical Research 93, B9. http://dx.doi.org/10.1029/JB093iB09p10521. Ingebritsen, S.E., Manning, C.E., 1999. Geological implications of a permeabilitydepth curve for the continental crust. Geology 27, 1107e1110. Italiano, F., Martinelli, G., Bonfanti, P., Caracausi, A., 2009. Long-term (1997e2007) geochemical monitoring of gases from the Umbria-Marche region. Tectonophysics. http://dx.doi.org/10.1016/j.tecto.2009.02.040. Jonsson, S., Segall, P., Pedersen, R., Bjornsson, G., 2003. Post-earthquake ground movements correlated to pore-pressure transients. Nature 424, 179e183. http:// dx.doi.org/10.1038/nature01776. Kanamori, H., Anderson, D.L., 1975. Theoretical basis of some empirical relations in seismology. Bulletin of the Seismological Society of America 65, 1073e1095. King, C.-Y., Koizumi, N., Kitagawa, Y., 1995. Hydrogeochemical anomalies and the 1995 Kobe Earthquake. Science 269 (5220), 38e39. http://dx.doi.org/10.1126/ science.269.5220.38. Lucente, F.P., De Gori, P., Margheriti, L., Piccinini, D., Di Bona, M., Chiarabba, C., Piana Agostinetti, N., 2010. Temporal variation of seismic velocity and anisotropy before the 2009 Mw 6.3 L’Aquila earthquake, Italy. Geology 38 (11), 1015e1018. http://dx.doi.org/10.1130/G31463.1. Manga, M., Wang, C.-Y., 2007. Earthquake hydrology. In: Schubert, G. (Ed.), Treatise on Geophysics, vol. 4 (10), pp. 293e320. Manning, C.E., Ingebritsen, S.E., 1999. Permeability of the continental crust: implications of geothermal data and metamorphic systems. Reviews of Geophysics 37, 127e150. Marone, C., 1998. Laboratory-derived friction laws and their application to seismic faulting. Annual Review of Earth and Planetary Sciences 26, 643e696. Matsumoto, N., Takahashi, M., 1994. State space modeling to detect changes of ground water level associated with earthquakes. In: Paper Presented at IUGG XXI General Assembly, International Union of Geodesy and Geophysics, Boulder, Colorado. Matthäi, S.K., Fischer, G., 1996. Quantitative modeling of fault-fluid-discharge and fault-dilation-induced fluid-pressure variations in the seismogenic zone. Geology 24, 183e186. McCaig, A.M., 1988. Deep fluid circulation in fault zones. Geology 16, 867e870. Meade, B.J., Hager, B.H., 2005. Block models of crustal motion in southern California constrained by GPS measurements. Journal of Geophysical Research 110, B03403. http://dx.doi.org/10.1029/2004JB003209. Micklethwaite, S., Cox, S.F., 2004. Fault-segment rupture, aftershock-zone fluid flow, and mineralization. Geology 32, 813e816. http://dx.doi.org/10.1130/g20559.1. Miller, S.A., Nur, A., Olgaard, D.L., 1996. Earthquakes as a coupled shear stress high pore pressure dynamical system. Geophysical Research Letters 23, 197e200. Miller, S.A., Nur, A., 2000. Permeability as a toggle switch in fluid-controlled crustal processes. Earth and Planetary Science Letters 183, 133e146. Miller, S.A., 2002. Properties of large ruptures and the dynamical influence of fluids on earthquakes and faulting. Journal of Geophysical Research 107. http:// dx.doi.org/10.1029/2000jb000032, 2182. Miller, S., Collettini, C., Chiaraluce, L., Cocco, M., Barchi, M.R., Kohl, T., 2004. Aftershock driven by a high pressure CO2 source at depth. Nature 427, 724e727. Muir-Wood, R., King, G.C.P., 1993. Hydrological signatures of earthquake strain. Journal of Geophysical Research 98 (B12), 22,035e22,068. Oliver, J., 1986. Fluids expelled tectonically from orogenic belts: their role in hydrocarbon migration and other geologic phenomena. Geology 14, 99e102. http://dx.doi.org/10.1130/0091-7613(1986)14. Panza, G.F., La Mura, C., Peresan, A., Romanelli, F., Vaccari, F., 2012. Seismic hazard scenarios as preventive tools for a disaster resilient society. In: Dmowska, R. (Ed.), Advances in Geophysics. Elsevier, pp. 93e165. Peresan, A., Kossobokov, V., Romashkova, L., Panza, G.F., 2005. Intermediate-term middle-range earthquake predictions in Italy: a review. Earth-Science Reviews 69, 97e132. Peresan, A., Panza, G.F., 2012. Improving earthquake hazard assessments in Italy: an alternative to “Texas Sharpshooting”. EOS 93, 538e539. Pingue, F., De Natale, G., 1993. Fault mechanism of the 40 seconds subevent of the 1980 Irpinia (Southern Italy) earthquake from levelling data. Geophysical Research Letters 20 (10), 911e914. Plastino, W., Panza, G.F., Doglioni, C., Frezzotti, M.L., Peccerillo, A., De Felice, P., Bella, F., Povinec, P.P., Nisi, S., Ioannucci, L., Aprili, P., Balata, M., Cozzella, M.L., Laubenstein, M., 2011. Uranium groundwater anomalies and active normal faulting. Journal of Radioanalytical and Nuclear Chemistry 288, 101e107. Quing, Z., Xiu-Deng, X., Chang-Gong, D., 1991. Thermal infrared anomaly e precursor of impending earthquakes. Chinese Science Bulletin 36, 319e323. Riguzzi, F., Crespi, M., Devoti, R., Doglioni, C., Pietrantonio, G., Pisani, A.R., 2012. Geodetic strain rate and earthquake size: new clues for seismic hazard studies. Physics of the Earth and Planetary Interiors 206e207, 67e75. Roeloffs, E.A., 1988. Hydrologic precursors to earthquakes: a review. Pure and Applied Geophysics 126, 177e209. Roeloffs, E.A., 1998. Persistent water level changes in a well near Parkfield, California, due to local and distant earthquakes. Journal of Geophysical Research 103, 869e889. Roeloffs, E., Quilty, E., 1997. Water level and strain changes preceding and following the August 4, 1985 Kettleman Hills, California, earthquake. Pure and Applied Geophysics 149, 21e60. Rojstaczer, S., Wolf, S., 1992. Permeability changes associated with large earthquakes: an example from Loma Prieta, California. Geology 20, 211e214. Rudnicki, J.W., Yin, J., Roeloffs, E.A., 1993. Analysis of water level changes induced by fault creep at Parkfield, California. Journal of Geophysical Research 98, 8143e8152. Ruina, A., 1983. Slip instability and state variable friction laws. Journal of Geophysical Research 88, 10359e10370. Salazar, J.M.L., Perez, N.M., Hernandez, P.A., Soriano, T., Barahona, F., Olmos, R., Cartagena, R., Lopez, D.L., Lima, R.N., Melian, G., Galindo, I., Padron, E., Sumino, H., Notsu, K., 2002. Precursory diffuse carbon dioxide degassing signature related to a 5.1 magnitude earthquake in El Salvador, Central America. Earth and Planetary Science Letters 205, 81e89. Savage, J.C., 1983. A dislocation model of strain accumulation and release at a subduction zone. Journal of Geophysical Research 88, 4984e4996. Sibson, R.H., 1981. Controls on low-stress hydro-fracture dilatancy in thrust, wrench and normal fault terrains. Nature 289, 665e667. Sibson, R.H., 1992. Implications of fault-valve behaviour for rupture nucleation and recurrence. Tectonophysics 211, 283e293. Sibson, R.H., 2000. Fluid involvement in normal faulting. Journal of Geodynamics 29, 469e499. http://dx.doi.org/10.1016/S0264-3707(99)00042-3. Sibson, R.H., Moore, J.Mc.M., Rankin, A.H., 1975. Seismic pumping-a hydrothermal fluid transport mechanism. Journal of the Geological Society 131 (6), 653e659. http://dx.doi.org/10.1144/gsjgs.131.6.0653. Sieh, K., Natawidjaja, D.H., Meltzner, A.J., Shen, C.-C., Cheng, H., Li, K.-S., Suwargadi, B.W., Galetzka, J., Philibosian, B., Edwards, R.L., 2008. Earthquake supercycles inferred from sea-level changes recorded in the Corals of West Sumatra. Science 322 (5908), 1674e1678. http://dx.doi.org/10.1126/ science.1163589. Sil, S., 2006. Response of Alaskan Wells to Near and Distant Large Earthquakes (Master thesis). University of Alaska Fairbanks, pp. 1e83. Slejko, D., Caporali, A., Stirling, M., Barba, S., 2010. Occurrence probability of moderate to large earthquakes in Italy based on new geophysical methods. Journal of Seismology 14, 27e51. http://dx.doi.org/10.1007/s10950-009-9175-x. Sneed, M., Galloway, D.L., Cunningham, W.L., 2003. Earthquakes-rattling the Earth’s Plumbing System. USGS Fact Sheet 096-03, pp. 1e5. Talwani, P., Chen, L., Gahalaut, K., 2007. Seismogenic permeability, ks. Journal of Geophysical Research 112, B07309. http://dx.doi.org/10.1029/2006JB004665. Tenthorey, E., Cox, S.F., Todd, H.F., 2003. Evolution of strength recovery and permeability during fluid-rock reaction in experimental fault zones. Earth and Planetary Science Letters 206, 161e172. Terakawa, T., Zoporowski, A., Galvan, B., Miller, S.A., 2010. High-pressure fluid at hypocentral depths in the L’Aquila region inferred from earthquake focal mechanisms. Geology 38, 995e998. http://dx.doi.org/10.1130/G31457.1. Thatcher, W., 1993. The earthquake cycle and its role in the long-term deformation of the continental lithosphere. Annali di Geofisica 36, 13e24. Thatcher, W., Rundle, J.B., 1979. A model for the earthquake cycle in underthrust zones. Journal of Geophysical Research 84, 5540e5556. Tramutoli, V., Cuomo, V., Filizzola, C., Pergola, N., Pietrapertosa, C., 2005. Assessing the potential of thermal infrared satellite surveys for monitoring seismically active areas. The case of Kocaeli (Izmit) earthquake, August 17th, 1999. Remote Sensing of Environment 96, 409e426. Tronin, A.A., 1996. Satellite thermal survey e a new tool for the studies of seismoactive regions. International Journal of Remote Sensing 17, 1439e1455. Tokunaga, T., 1999. Modeling of earthquake-induced hydrological changes and possible permeability enhancement due to the 17 January 1995 Kobe Earthquake, Japan. Journal of Hydrology 223, 221e229. Tullis, J., Yund, R.A., Farver, J., 1996. Deformation-enhanced fluid distribution in feldspar aggregates and implications for ductile shear zones. Geology 24, 63e66. Wakita, H., 1996. Geochemical challenge to earthquake prediction. Proc. Natl. Acad. Sci. U. S. A. 93, 3781e3786. Wannamaker, P.E., Jiracek, G.R., Stodt, J.A., Caldwell, T.G., Porter, A.D., Gonzalez, V.M., McKnight, J.D., 2002. Fluid generation and pathways beneath an active compressional orogen, the New Zealand Southern Alps, inferred from magnetotelluric (MT) data. Journal of Geophysical Research 107. ETG 6, 1eETG 6, 20. Whitehead, R.L., Harper, R.W., Sisco, H.G., 1985. Hydrologic changes associated with the October 28, 1983, Idaho earthquake. Pure and Applied Geophysics 122 (2e4), 280e293. http://dx.doi.org/10.1007/BF00874599. Yürür, M.T., 2006. The positive temperature anomaly as detected by Landsat TM data in the eastern Marmara Sea (Turkey): possible link with the 1999 Izmit earthquake. International Journal of Remote Sensing 27 (6), 1205e1218. Zhang, Y., Lin, G., Wang, Y.J., Roberts, P.A., Ord, A., 2007. Numerical modelling of deformation and fluid flow in the Shui-Kou-Shan mineralisation district, Hunan Province, South China. Ore Geology Reviews 31, 261e278. Zhang, Y., Schaubs, P.M., Zhao, C., Ord, A., Hobbs, B.E., Barnicoat, A.C., 2008. Faultrelated dilation, permeability enhancement, fluid flow and mineral precipitation patterns: numerical models. Geological Society, London, Special Publications 299, 239e255.en
dc.description.obiettivoSpecifico2T. Tettonica attivaen
dc.description.journalTypeN/A or not JCRen
dc.description.fulltextrestricteden
dc.relation.issn1674-9871en
dc.contributor.authorDoglioni, C.en
dc.contributor.authorBarba, S.en
dc.contributor.authorCarminati, E.en
dc.contributor.authorRiguzzi, F.en
dc.contributor.departmentLa Sapienza Universitàen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.departmentLa Sapienza Universitàen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione ONT, Roma, Italiaen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione AC, Roma, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma1, Roma, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione ONT, Roma, Italia-
crisitem.author.orcid0000-0002-8651-6387-
crisitem.author.orcid0000-0001-7965-6667-
crisitem.author.orcid0000-0003-3453-5110-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
1-s2.0-S1674987113001126-main.pdf6.4 MBAdobe PDF
Show simple item record

WEB OF SCIENCETM
Citations

36
checked on Feb 10, 2021

Page view(s) 10

460
checked on Mar 27, 2024

Download(s)

25
checked on Mar 27, 2024

Google ScholarTM

Check

Altmetric