Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/926
Authors: Wilke, M. 
Title: Fe in magma - An overview
Issue Date: 2005
Series/Report no.: 4-5/48 (2005)
URI: http://hdl.handle.net/2122/926
Keywords: iron
silicate melt
redox conditions
Subject Classification04. Solid Earth::04.08. Volcanology::04.08.01. Gases 
04. Solid Earth::04.08. Volcanology::04.08.03. Magmas 
04. Solid Earth::04.08. Volcanology::04.08.04. Thermodynamics 
Abstract: The strong influence of physical conditions during magma formation on Fe equilibria offers a large variety of possibilities to deduce these conditions from Fe-bearing phases and phase assemblages found in magmatic rocks. Conditions of magma genesis and their evolution are of major interest for the understanding of volcanic eruptions. A brief overview on the most common methods used is given together with potential problems and limitations. Fe equilibria are not only sensitive to changes in intensive parameters (especially T and fO2) and extensive parameters like composition also have major effects, so that direct application of experimentally calibrated equilibria to natural systems is not always possible. Best estimates for pre-eruptive conditions are certainly achieved by studies that relate field observations directly to experimental observations for the composition of interest using as many constraints as possible (phase stability relations, Fe-Ti oxides, Fe partitioning between phases, Fe oxidation state in glass etc.). Local structural environment of Fe in silicate melts is an important parameter that is needed to understand the relationship between melt transport properties and melt structure. Assignment of Fe co-ordination and its relationship to the oxidation state seems not to be straightforward. In addition, there is considerable evidence that the co-ordination of Fe in glass differs from that in the melt, which has to be taken into account when linking melt structure to physical properties of silicate melts at T and P.
Appears in Collections:Annals of Geophysics

Files in This Item:
File Description SizeFormat
04Wilke.pdf643.84 kBAdobe PDFView/Open
Show full item record

Page view(s)

220
checked on Apr 17, 2024

Download(s) 5

837
checked on Apr 17, 2024

Google ScholarTM

Check