Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/925
DC FieldValueLanguage
dc.contributor.authorallMoretti, R.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
dc.date.accessioned2006-02-22T14:42:27Zen
dc.date.available2006-02-22T14:42:27Zen
dc.date.issued2005en
dc.identifier.urihttp://hdl.handle.net/2122/925en
dc.description.abstractIn order to describe and quantify the reactivity of silicate melts, the ionic notation provided by the Temkin formalism has been historically accepted, giving rise to the study of melt chemical equilibria in terms of completely dissociated ionic species. Indeed, ionic modelling of melts works properly as long as the true extension of the anionic matrix is known. This information may be attained in the framework of the Toop-Samis (1962a,b) model, through a parameterisation of the acid-base properties of the dissolved oxides. Moreover, by combining the polymeric model of Toop and Samis with the «group basicity» concept of Duffy and Ingram (1973, 1974a,b, 1976) the bulk optical basicity (Duffy and Ingram, 1971; Duffy, 1992) of molten silicates and glasses can be split into two distinct contributions, i.e. the basicity of the dissolved basic oxides and the basicity of the polymeric units. Application to practical cases, such as the assessment of the oxidation state of iron, require bridging of the energetic gap between the standard state of completely dissociated component (Temkin standard state) and the standard state of pure melt component at P and T of interest. On this basis it is possible to set up a preliminary model for iron speciation in both anhydrous and hydrous aluminosilicate melts. In the case of hydrous melts, I introduce both acidic and basic dissociation of the water component, requiring the combined occurrence of H+ cations, OH- free anions and, to a very minor extent, of T-OH groups. The amphoteric behaviour of water revealed by this study is therefore in line with the earlier prediction of Fraser (1975).en
dc.format.extent1086720 bytesen
dc.format.mimetypeapplication/pdfen
dc.language.isoEnglishen
dc.publisher.nameINGVen
dc.relation.ispartofAnnals of Geophysicsen
dc.relation.ispartofseries4-5/48 (2005)en
dc.subjectpolymerisationen
dc.subjectbasicityen
dc.subjectoxidationstateen
dc.subjectwater speciationen
dc.subjectTemkin modelen
dc.titlePolymerisation, basicity, oxidation state and their role in ionic modelling of silicate meltsen
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.subject.INGV04. Solid Earth::04.08. Volcanology::04.08.01. Gasesen
dc.subject.INGV04. Solid Earth::04.08. Volcanology::04.08.04. Thermodynamicsen
dc.description.journalTypeJCR Journalen
dc.description.fulltextopenen
dc.contributor.authorMoretti, R.en
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextopen-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptCentro Interdipartimentale di Ricerche in Ingegneria Ambientale, Seconda Università di Napoli, Naples, Italy.-
crisitem.author.orcid0000-0003-2031-5192-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Annals of Geophysics
Files in This Item:
File Description SizeFormat
03Moretti.pdf1.06 MBAdobe PDFView/Open
Show simple item record

Page view(s) 20

472
checked on Apr 17, 2024

Download(s) 5

1,254
checked on Apr 17, 2024

Google ScholarTM

Check