Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/9257
DC FieldValueLanguage
dc.contributor.authorallPischiutta, M.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.authorallPastori, M.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione CNT, Roma, Italiaen
dc.contributor.authorallImprota, L.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.authorallSalvini, F.; Dipartimento di Scienze Geologiche, Università Roma 3, Rome, Italy.en
dc.contributor.authorallRovelli, A.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.date.accessioned2015-01-15T09:52:06Zen
dc.date.available2015-01-15T09:52:06Zen
dc.date.issued2014en
dc.identifier.urihttp://hdl.handle.net/2122/9257en
dc.description.abstractWavefield polarization is investigated using 200 seismograms recorded by a network of 20 stations installed on rock outcrops in the Val d’Agri region that hosts the largest oil fields in the southern Apennines (Italy). Polarization is assessed both in the frequency and time domains through the individual-station horizontal-to-vertical spectral ratio and covariance-matrix analysis, respectively. We find that most of the stations show a persistent horizontal polarization of waveforms, with a NE-SW predominant trend. This direction is orthogonal to the general trend of Quaternary normal faults in the region and to the maximum horizontal stress related to the present extensional regime. According to previous studies in other areas, such a directional effect is interpreted as due to the presence of fault-related fracture fields, polarization being orthogonal to their predominant direction. A comparison with S wave anisotropy inferred from shear wave splitting indicates an orthogonal relation between horizontal polarization and fast S wave direction. This suggests that wavefield polarization and fast velocity direction are effects of the same cause: The existence of an anisotropic medium represented by fractured rocks where shear wave velocity is larger in the crack-parallel component and compliance is larger perpendicularly to the crack strike. The latter is responsible for the observed anisotropic pattern of amplitudes of horizontal ground motion in the study area.en
dc.language.isoEnglishen
dc.publisher.nameAmerican Geophysical Unionen
dc.relation.ispartofJournal of geophysical research - solid earthen
dc.relation.ispartofseries/119 (2014)en
dc.subjectGround motion Seismic anisotropyen
dc.titleOrthogonal relation between wavefield polarization and fast S wave direction in the Val d’Agri region: An integrating method to investigate rock anisotropyen
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber396–408en
dc.subject.INGV04. Solid Earth::04.06. Seismology::04.06.04. Ground motionen
dc.identifier.doi10.1002/2013JB010077en
dc.relation.referencesAmato, A., and P. Montone (1997), Present-day stress field and active tectonics in southern peninsular Italy, Geophys. J. Int., 130(2), 519–534. Ben-Zion, Y., and C. G. Sammis (2003), Characterization of fault zones, Pure Appl. Geophys., 160, 677–715. Bonamassa, O., and J. E. Vidale (1991), Directional site resonances observed from aftershocks of the 18 October Loma Prieta earthquake, Bull. Seismol. Soc. Am., 81(5), 1945–1957. Boness, N. L., and M. D. Zoback (2006), Mapping stress and structurally controlled crustal shear velocity anisotropy in California, Geology, 34(10), 825–828. Buech, F., T. R. Davies, and J. R. Pettinga (2010), The Little Red Hill seismic experimental study: Topographic effects on ground motion at a bedrock- dominated mountain edifice, Bull. Seismol. Soc. Am., 100, 2219–2229, doi:10.1785/0120090345. Burjànek, J., G. Gassner-Stamm, V. Poggi, J. R. Moore, and D. Fäh (2010), Ambient vibration analysis of an unstable mountain slope, Geophys. J. Int., 180, 820–828. Burjànek, J., J. R. Moore, F. X. Yugsi-Molina, and D. Fäh (2012), Instrumental evidence of normal mode rock slope vibration, Geophys. J. Int., 188, 559–569, doi:10.1111/j.1365-246X.2011.05272.x. Calderoni, G., A. Rovelli, and R. Di Giovambattista (2010), Large amplitude variations recorded by an on-fault seismological station during the L’Aquila earthquakes: Evidence for a complex fault-induced site effect, Geophys. Res. Lett., 37, L24305, doi:10.1029/2010GL045697. Cello, G., R. Gambini, S.Mazzoli, A. Read, E. Tondi, and V. Zucconi (2000), Fault zone characteristics and scaling properties of the Val d’Agri fault system (Southern Apennines, Italy), J. Geodyn., 29(3–5), 293–307. Cello, G., E. Tondi, L. Micarelli, and L. Mattioni (2003), Active tectonics and earthquake sources in the epicentral area of the 1857 Basilicata earthquake (Southern Italy), J. Geodyn., 36, 37–50, doi:10.1016/S0264-3707(03)00037-1. Chiarabba, C., L. Jovane, and R. Di Stefano (2005), A new view of Italian seismicity using 20 years of instrumental recordings, Tectonophysics, 395, 251–268. Cianfarra, P., A. Forieri, F. Salvini, I. E. Tabacco, and A. Zirizotti (2009), Geological setting of the Concordia Trench-Lake system in East Antarctica, Geophys. J. Int, 177, 1305–1314, doi:10.1111/j.1365-246X.2009.04123.x. Cinque, A., E. Patacca, P. Scandone, and M. Tozzi (1993), Quaternary kinematic evolution of the Southern Apennines: Relationships between surface geological features and deep lithospheric structures, Ann. Geofis., 36, 249–259. Cochran, E. S., Y.-G. Li, and J. E. Vidale (2006), Anisotropy in the shallow crust observed around the San Andreas Fault before and after the 2004 M 6.0 Parkfield earthquake, Bull. Seismol. Soc. Am., 9(4B), 364–375, doi:10.1785/0120050804. CPTI Working Group (2004), Catalogo Parametrico dei Terremoti Italiani, (CPTI04), INGV, Bologna. [Available at http://emidius.mi. ingv.it/CPTI04/.] Crampin, S. (1978), Seismic wave propagation through a cracked solid: Polarization as a possible dilatancy diagnostic, Geophys. JR Astron. Soc, 53, 467–496. Cucci, L., S. Pondrelli, A. Freopoli, M. T. Mariucci, and M. Moro (2004), Local pattern of stress field and seismogenic sources in Meandro Pergola basin and in Agri valley (Southern Italy), Geophys. J. Int., 156, 575–583. Cultrera, G., A. Rovelli, G. Mele, R. Azzara, A. Caserta, and F.Marra (2003), Azimuth dependent amplification ofweak and strong groundmotions within a fault zone, Nocera Umbra, Central Italy, J. Geophys. Res., 108(B3), 2156–2170, doi:10.1029/2002JB001929. D’Agostino, N., A. Avallone, D. Cheloni, S. Mantenuto, and G. Selvaggi (2008), Active tectonics of the Adriatic region from GPS and earthquake slip vectors, J. Geophys. Res., 113, B12413, doi:10.1029/2008JB005860. Di Giulio, G., F. Cara, A. Rovelli, G. Lombardo, and R. Rigano (2009), Evidences for strong directional resonances in intensely deformed zones of the Pernicana fault, Mount Etna, Italy, J. Geophys. Res., 114, B10308, doi:10.1029/2009JB006393. Di Giulio, G., A. Rovelli, F. Cara, P. P. Bruno, M. Punzo, and F. Varriale (2013), A controlled-source experiment to investigate the origin of wavefield polarization in fault zones, paper presented at IAHS-IAPSO-IASPEI Joint Assembly, 22–26 July 2013, Gothenburg, Sweden (abstract n. 2843253). Falsaperla, S., F. Cara, A. Rovelli, M. Neri, B. Behncke, and V. Acocella (2010), Effects of the 1989 fracture system in the dynamics of the upper SE flank of Etna revealed by volcanic tremor data: The missing link?, J. Geophys. Res., 115, B11306, doi:10.1029/2010JB007529. Holton, J. (1999), Four geologic settings dominate oil, gas fields of Italy, Sicily, Oil Gas J., 97(49), 81–84. Improta, L., et al. (2010), Detecting young, slow-slipping active faults by geologic and multidisciplinary high-resolution geophysical investigations: A case study from the Apennine seismic belt, Italy, J. Geophys. Res., 115, B11307, doi:10.1029/2010JB000871. Italiano, F.,M.Martelli, G.Martinelli, P. M. Nuccio, andM. Paternoster (2001), Significance of earthquake-related anomalies in fluids of Val d’Agri (Southern Italy), Terra Nova, 13, 249–257, doi:10.1046/j.1365-3121.2001.00346.x. Jurkevics, A. (1988), Polarization analysis of three component array data, Bull. Seismol. Soc. Am., 78, 1725–1743. Karabulut, H., and M. Bouchon (2007), Spatial variability and non-linearity of strong ground motion near a fault, Geophys. J. Int., 170(1), 262–274. Lazzari, S., and F. Lentini (1991), Carta Geologica del Bacino del Fiume Agri. Scala 1:50.000, S.EL.CA. (Ed.), Firenze. Marzorati, S., C. Ladina, E. Falcucci, S. Gori, M. Saroli, G. Ameri, and F. Galadini (2011), Site effects “On the Rock”: The case study of Castelvecchio Subequo (L’Aquila, central Italy), B. Earthq. Eng., 9, 841–868, doi:10.1007/s10518-011-9263-5. Maschio, L., L. Ferranti, and P. Burrato (2005), Active extension in Val d’Agri area, Southern Apennines, Italy: Implications for the geometry of the seismogenic belt, Geophys. J. Int., 162(2), 591–609. Massa, M., S. Lovati, E. D’Alema, G. Ferretti, and M. Bakavoli (2010), Experimental approach for estimating seismic amplification effects at the top of a ridge and their implication on ground motion predictions: The case of Narni (Central Italy), Bull. Seismol. Soc. Am., 100, 3020–3034, doi:10.1785/0120090382. Mazzoli, S., S. Corrado, M. De Donatis, D. Scrocca, R. W. H. Butler, D. Di Bucci, G. Naso, C. Nicolai, and V. Zucconi (2000), Time and space variability of thin skinned and thick skinned thrust tectonics in the Apennines (Italy), Rendiconti Lincei Scienze Fisiche e Naturali, XI(1), 5–39. Menardi Noguera, A., and G. Rea (2000), Deep structure of the Campanian- Lucanian Arc (Southern Apennine, Italy), Tectonophysics, 324(4), 239–265. Moore, J., V. Gischig, J. Burjanek, S. Loew, and D. Fäh (2011), Site effects in unstable rock slopes: Dynamic behavior of the Randa instability (Switzerland), Bull. Seismol. Soc. Am., 101(6), 3110–3116, doi:10.1785/ 0120110127. Panzera, F., G. Lombardo, and R. Rigano (2011), Evidence of topographic effects through the analysis of ambient noise measurements, Seismol. Res. Lett., 82, 413–419, doi:10.1785/gssrl.82.3.413. Pastori, M., D. Piccinini, L. Margheriti, L. Improta, L. Valoroso, L. Chiaraluce, and C. Chiarabba (2009), Stress aligned cracks in the upper crust of the Val d’Agri region as revealed by shear wave splitting, Geophys. J. Int., 179(1), 601–614. Pastori, M., D. Piccinini, L. Valoroso, A. Wuestefeld, L. Zaccarelli, F. Bianco, M. Kendall, D. Di Bucci, L. Margheriti, and M. R. Barchi (2012), Crustal fracturing field and presence of fluid as revealed by seismic anisotropy: Case histories from seismogenic areas in the Apennines (Italy), Bollettino di Geofisica Teorica e Applicata, 53(4), 417–433, doi:10.4430/ bgta0047. Patacca, E., and P. Scandone (1989), Post-Tortonian mountain building in the Apennines. The role of the passive sinking of a relic lithospheric slab: The Lithosphere in Italy, in Atti dei Convegni dei Lincei,vol. 80, edited by A. Boriani et al., pp. 157–176, Academia Nazionale dei Lincei, Roma, Italia. Patacca, E., and P. Scandone (2001), Late thrust propagation and sedimentary response in the thrust belt—Foredeep system of the Southern Apennines (Pliocene-Pleistocene), in Anatomy of a Mountain: The Apennines and Adjacent Mediterranean Basins, edited by G. B. Vai and I. P. Martini, pp. 401–440, Kluwer Academic Publ., London, U.K. Peng, Z., and Y. Ben-Zion (2004), Systematic analysis of crustal anisotropy along theKaradereDuzce branch of theNorth Anatolian fault,Geophys. J. Int., 159(1), 253–274, doi:10.1111/j.1365-246X.2004.02379.x. Peng, Z., and Y. Ben-Zion (2006), Temporal changes of shallow seismic velocity around the Karadere-Duzce Branch of the North Anatolian Fault and strong ground motion, Pure Appl. Geophys., 163, 567–600. Piccinini, D., M. Pastori, and M. Marghieriti (2013), ANISOMAT+: An automatic tool to retrieve seismic anisotropy from local earthquakes, Comput. Geosci., 56, 62–68, ISSN 0098–3004, doi:10.1016/j.cageo.2013.01.012. Pischiutta, M., G. Cultrera, A. Caserta, L. Luzi, and A. Rovelli (2010), Topographic effects on the hill of Nocera Umbra, Central Italy, Geophys. J. Int., 2, 977–987, doi:10.1111/j.1365246X.2010.04654.x. Pischiutta, M., F. Salvini, J. Fletcher, A. Rovelli, and Y. Ben-Zion (2012), Horizontal polarization of ground motion in the Hayward fault zone at Fremont, California: Dominant fault-high-angle polarization and fault-induced cracks, Geophys. J. Int., 188(3), 1255–1272. Pischiutta, M., A. Rovelli, F. Salvini, G. Di Giulio, and Y. Ben-Zion (2013), Directional resonance variations across the Pernicana fault, Mt. Etna, in relation to brittle deformation fields, Geophys. J. Int., 193, 986–996, doi:10.1093/gji/ggt031. Pondrelli, S., S. Salimbeni, G. Ekström, A. Morelli, P. Gasperini, and G. Vannucci (2006), The Italian CMT dataset from 1977 to the present, Phys. Earth Planet. Int., 159(3–4), 286–303, doi:10.1016/j.pepi.2006.07.008. Riedel, W. (1929), Zur mechanik geologischer Brucherscheinungen, Zbl. Mineral. Geol. Paläont.B, 1929B, 354–368. Rigano, R., F. Cara, G. Lombardo, and A. Rovelli (2008), Evidence of ground motion polarization on fault zones of Mount Etna volcano, J. Geophys. Res., 113, B10306, doi:10.1029/2007JB005574. Serpelloni, E., M. Anzidei, P. Baldi, G. Casula, and A. Galvani (2005), Crustal velocity and strain rate fields in Italy and surrounding regions: New results from the analysis of permanent and nonpermanent GPS networks, Geophys. J. Int., 161, 861–880. Shiner, P., A. Beccacini, and S. Mazzoli (2004), Thin-skinned versus thickskinned structural models for Apulian carbonate reservoirs: Constraints from the Val d’Agri fields, S Apennines, Italy, Mar. Pet. Geol., 121(7), 805–827. Spudich, P., and K. B. Olsen (2001), Fault zone amplified waves as a possible seismic hazard along the Calaveras Fault in central California, Geophys. Res. Lett., 28(13), 2533–2536. Spudich, P., M. Hellweg, and H. K. Lee (1996), Directional topographic site response at Tarzana observed in aftershocks of the 1994 Northridge California earthquake: Implications for mainshocks motions, Bull. Seismol. Soc. Am., 86, 193–208. Syracuse, E. M., R. A. Holt, M. K. Savage, J. H. Johnson, C. H. Thurber, K. Unglert, K. N. Allan, S. Karaliyadda, and M. Henderson (2012), Temporal and spatial evolution of hypocentres and anisotropy from the Darfield aftershock sequence: Implications for fault geometry and age, N. Z. J. Geol. Geophys., 55(7), 287–293, doi:10.1080/00288306.2012.690766. Trice, R. (1999), Application of borehole image logs in constructing 3D static models of productive fracture network in the Apulian Platform, Southern Apennines, in Borehole Imaging: Applications and Case Histories, Geological Society, London, Special Publications, vol. 159, edited by M. A. Lovell et al., pp. 156–176, doi:10.1144/GSL .SP.1999.159.01.08. Valoroso, L., L. Improta, L. Chiaraluce, R. Di Stefano, L. Ferranti, A. Govoni, and C. Chiarabba (2009), Active faults and induced seismicity in the Val d’Agri area (Southern Apennines, Italy), Geophys. J. Int., 178, 488–502, doi:10.1111/j.1365-246X.2009.04166.x. Valoroso, L., L. Improta, P. De Gori, and C. Chiarabba (2011), Upper crustal structure, seismicity and pore pressure variations in an extensional seismic belt through 3D and 4D Vp and Vp/Vs models: The example of the Val d’Agri area (Southern Italy), J. Geophys. Res., 116, B07303, doi:10.1029/2010JB007661. Zembo, I., L. Panzeri, A. Galli, R. Berenzio, M. Martini, and E. Sibilia (2009), Quaternary evolution of the intermontane Val d’Agri Basin, Southern Apennines, Quat. Res., 72(3), 431–442.en
dc.description.obiettivoSpecifico3T. Pericolosità sismica e contributo alla definizione del rischioen
dc.description.journalTypeJCR Journalen
dc.description.fulltextrestricteden
dc.relation.issn0148-0227en
dc.contributor.authorPischiutta, M.en
dc.contributor.authorPastori, M.en
dc.contributor.authorImprota, L.en
dc.contributor.authorSalvini, F.en
dc.contributor.authorRovelli, A.en
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione ONT, Roma, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.departmentDipartimento di Scienze Geologiche, Università Roma 3, Rome, Italy.en
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma2, Roma, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma1, Roma, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione ONT, Roma, Italia-
crisitem.author.deptRoma Tre University-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma1, Roma, Italia-
crisitem.author.orcid0000-0001-9991-5048-
crisitem.author.orcid0000-0002-8354-6978-
crisitem.author.orcid0000-0003-0952-3978-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
5_JGR_Valdagrijgrb50429.pdfMain paper5.47 MBAdobe PDF
Show simple item record

WEB OF SCIENCETM
Citations 20

17
checked on Feb 10, 2021

Page view(s) 50

509
checked on Apr 17, 2024

Download(s)

19
checked on Apr 17, 2024

Google ScholarTM

Check

Altmetric