Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/9256
DC FieldValueLanguage
dc.contributor.authorallPischiutta, M.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.authorallAnselmi, M.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.authorallCianfarra, P.; Dipartimento di Scienze Geologiche, Università Roma 3, Largo San Leonardo Murialdo 1, Rome, Italyen
dc.contributor.authorallRovelli, A.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.authorallSalvini, F.; Dipartimento di Scienze Geologiche, Università Roma 3, Largo San Leonardo Murialdo 1, Rome, Italyen
dc.date.accessioned2015-01-15T09:49:57Zen
dc.date.available2015-01-15T09:49:57Zen
dc.date.issued2013-05-04en
dc.identifier.urihttp://hdl.handle.net/2122/9256en
dc.description.abstractThe technique of the wavefield polarization is applied to ambient vibrations recorded in the Mefite d’Ansanto area, an important non-volcanic natural emission of low temperature CO2 enriched gases. Twentyfive measurements were performed in the study area, eleven near the emission site and the other fourteen in different sites within an area of 5 km. Polarization is assessed both in the frequency and time domain through the individual-station horizontal-to-vertical spectral ratio and covariance-matrix analysis, respectively. We find a significant tendency of ground motion in the gas emission area to be polarized in the horizontal plane, with a N115 predominant trend. This polarization tends to disappear while moving far from the site. According to previous papers in other study areas, such a directional effect is likely caused by fault-induced fractures and tends to be orthogonal to the fracture strike. The predominant NW–SE regional faulting does not fit the N115 polarization direction. To explain observations, we propose an interpretation in terms of a NE–SW oriented, local transfer fault as inferred from the lineament analysis. The intersection of the damage zone of this fault with the regional NW–SE normal fault system could easily be the responsible for the gas emissions since it favors a locally increased crustal weakness.en
dc.description.sponsorship‘‘Vigor-Geotermia’’ project http:// www.vigor-geotermia.it/en
dc.language.isoEnglishen
dc.publisher.nameElsevier Science Limiteden
dc.relation.ispartofPhysics and Chemistry of the Earthen
dc.relation.ispartofseries/63 (2013)en
dc.subjectCO2 gas emission Directional resonance Fault damage zone Lineament analysisen
dc.titleDirectional site effects in a non-volcanic gas emission area (Mefite d’Ansanto, southern Italy): Evidence of a local transfer fault transversal to large NW–SE extensional faults?en
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber116-123en
dc.subject.INGV04. Solid Earth::04.06. Seismology::04.06.04. Ground motionen
dc.identifier.doi10.1016/j.pce.2013.03.008en
dc.relation.referencesBuech, F., Davies, T.R., Pettinga, J.R., 2010. The little red hill seismic experimental study: topographic effects on ground motion at a bedrock-dominated mountain edifice. Bull. Seismol. Soc. Am. 100, 2219–2229. http://dx.doi.org/10.1785/ 0120090345. Burjànek, J., Moore, J.R., Yugsi-Molina, F.X., Fäh, D., 2012. Instrumental evidence of normal mode rock slope vibration. Geophys. J. Int. 188 (2), 559–569. http:// dx.doi.org/10.1111/j.1365-246X.2011.05272.x. Chiodini, G., Granieri, D., Avino, R., Caliro, S., Costa, A., Minopoli, C., Vilardo, G., 2010. Non-volcanic CO2 Earth degassing: case of Mefite d’Ansanto (southern Apennines), Italy. Geophys. Res. Lett. 37, L11303. http://dx.doi.org/10.1029/ 2010GL042858. Cianfarra, P., Salvini, F., 2008. Ice cap surface lineaments in the Vostok–Dome C area, East Antarctica. What are they telling us on the East Antarctica craton tectonics? Terra Antartica Rep. 14, 203–208. Cinque, A., Patacca, E., Scandone, P., Tozzi, M., 1993. Quaternary kinematic evolution of the Southern Apennines. Ann. Geofis. 36 (2), 249–260. Del Gaudio, V., Wasowski, J., 2011. Advances and problems in understanding the seismic response of potentially unstable slopes. Eng. Geol. 122, 73–83. http:// dx.doi.org/10.1016/j.enggeo.2010.09.007. Di Giulio, G., Cara, F., Rovelli, A., Lombardo, G., Rigano, R., 2009. Evidences for strong directional resonances in intensely deformed zones of the Pernicana fault, Mount Etna, Italy. J. Geophys. Res. 114. http://dx.doi.org/10.1029/ 2009JB006393. Doglioni, C., Merlini, S., Cantarella, G., 1999. Foredeep geometries at the front of the Apennines in the Ionian Sea (central Mediterranean). Earth Planet. Sci. Lett. 168, 243–254. Ekström, G., Dziewonsky, A.M., Woodhouse, J.H., 1987. Centroid-moment tensor solutions for the 51 IASPEI selected earthquakes, 1980–1984. Phys. Earth Planet. Inter. 47, 62–66. Falsaperla, S., Cara, F., Rovelli, A., Neri, M., Behncke, B., Acocella, B., 2010. Effects of the 1989 fracture system in the dynamics of the upper SE flank of Etna revealed by volcanic tremor data: the missing link? J. Geophys. Res. 115 (B11306). http:// dx.doi.org/10.1029/2010JB007529. Giordano, G., Pinton, A., Cianfarra, P., Baez, W., Chiodi, A., Viramonte, J., Norini, G., Groppelli, G., 2013. Structural control on geothermal circulation in the Cerro Tuzgle–Tocomar geothermal volcanic area (Puna plateau, Argentina). J. Volcanol. Geotherm. Res. 249, 77–94. http://dx.doi.org/10.1016/ j.jvolgeores.2012.09.009. Griffith, A., Sanz, P.F., Pollard, D., 2009. Influence of outcrop scale fractures on the effective stiffness of fault damage zone rocks. Pure Appl. Geophys. 166, 1595– 1627. Harding, T.P., Lowell, J.D., 1979. Structural styles, their plate tectonic habitats & hydrocarbon traps in petroleum provinces. Am. Assoc. Petrol. Geol. Bull. 63, 1016–1058. Hippolyte, J.C., Angelier, J., Roure, F., 1994. A major geodynamic change revealed by quaternary stress pattern in the Southern Apennines (Italy). Tectonophysics 230, 199–210. Improta, L., Iannaccone, G., Capuano, P., Zollo, A., Scandone, P., 2000. Inferences on the upper crustal structure of the Southern Apennines (Italy) from seismic refraction investigations and subsurface data. Tectonophysics 317, 273–297. Improta, L., Bonagura, M., Capuano, P., Iannaccone, G., 2003. An integrated geophysical investigation of the upper crust in the epicentral area of the 1980, M = 6.9, Irpinia earthquake (Southern Italy). Tectonophysics 361, 139– 169. http://dx.doi.org/10.1016/S0040-1951(02)00588-7. Marzorati, S., Ladina, C., Falcucci, E., Gori, S., Saroli, M., Ameri, G., Galadini, F., 2011. Site effects ‘‘On the Rock’’: the case study of Castelvecchio Subequo (L’Aquila, central Italy). Bull. Earthq. Eng. 9, 841–868. http://dx.doi.org/10.1007/s10518- 011-9263-5. Massa, M., Lovati, S., D’Alema, E., Ferretti, G., Bakavoli, M., 2010. Experimental approach for estimating seismic amplification effects at the top of a ridge and their implication on ground motion predictions: the case of Narni (Central Italy). Bull. Seismol. Soc. Am. 100, 3020–3034. http://dx.doi.org/10.1785/ 0120090382. Matano, F., Di Nocera, S., 2001. Geologia del settore centrale dell’Irpinia (Appennino meridionale): nuovi dati e interpretazioni. Boll. Soc. Geol. Ital. 120, 3–14. Montone, P., Mariucci, M.T., Pierdominici, S., 2012. The Italian present-day stress map. Geophys. J. Int. 189, 705–716. http://dx.doi.org/10.1111/j.1365- 246X.2012.05391.x. Moore, J., Gischig, V., Burjànek, J., Loew, S., Fäh, D., 2011. Site effects in unstable rock slopes: dynamic behavior of the Randa instability (Switzerland). Bull. Seismol. Soc. Am. 101 (6), 3110–3116. http://dx.doi.org/10.1785/0120110127. Mostardini, F., Merlini, S., 1986. Appennino centro-meridionale. Sezioni geologiche e proposta di modello strutturale. Mem. Soc. Geol. Ital. 35, 177–202. Nakamura, Y., 1989. A method for dynamic characteristics estimation of subsurface using microtremors on the ground surface. Q. Rep. RTRI, Jpn. 30, 25–33. Panzera, F., Lombardo, G., Rigano, R., 2011. Evidence of topographic effects through the analysis of ambient noise measurements. Seismol. Res. Lett. 82, 413–419. http://dx.doi.org/10.1785/gssrl.82.3.413. Panzera, F., D’Amico, S., Lotteri, A., Galea, P., Lombardo, G., 2012. Seismic site response of unstable steep slope using noise measurements: the case study of Xemxija Bay area, Malta. Nat. Hazards Earth Syst. Sci. 12, 1–11. http:// dx.doi.org/10.5194/nhess-12-1-2012. Pardo, N., Macias, J.L., Giordano, G., Cianfarra, P., Bellatreccia, F., Avellán, D.R., 2009. The 1245 yr BP Asososca maar eruption: the youngest event along the Nejapa–Miraflores volcanic fault, Western Managua, Nicaragua. J. Volcanol. Geotherm. Res. 184 (3–4), 292–312. http://dx.doi.org/10.1016/ j.jvolgeores.2009.04.006. Patacca, E., Scandone, P., 2001. Late thrust propagation and sedimentary response in the thrust belt – foredeep system of the Southern Apennines (Pliocene– Pleistocene). In: Vai, G.B., Martini, I.P. (Eds.), Anatomy of an Orogen: The Apennines and Adjacent Mediterranean Basins. Kluwer Academic Publishers, Dordrecht, Netherlands, pp. 401–440. Pischiutta, M., Cultrera, G., Caserta, A., Luzi, L., Rovelli, A., 2010. Topographic effects on the hill of Nocera Umbra, central Italy. Geophys. J. Int. 2, 977–987. http:// dx.doi.org/10.1111/j.1365246X.2010.04654.x. Pischiutta, M., Salvini, F., Fletcher, J., Rovelli, A., Ben-Zion, Y., 2012. Horizontal polarization of ground motion in the Hayward fault zone at Fremont, California: dominant fault-high-angle polarization and fault-induced cracks. Geophys. J. Int. 188 (3), 1255–1272. http://dx.doi.org/10.1111/j.1365-246X.2011.05319.x. Pischiutta, M., Rovelli, A., Salvini, F., Di Giulio, G., Ben-Zion, Y., 2013. Directional resonance variations across the Pernicana fault, Mt. Etna, in relation to brittle deformation fields. Geophys. J. Int. 193 (2), 986–996. http://dx.doi.org/10.1093/ gji/ggt031. Rigano, R., Cara, F., Lombardo, G., Rovelli, A., 2008. Evidence of ground motion polarization on fault zones of Mount Etna volcano. J. Geophys. Res. 113, B10306. http://dx.doi.org/10.1029/2007JB005574. Spudich, P., Hellweg, M., Lee, H.W., 1996. Directional topographic site response at Tarzana observed in aftershocks of the 1994 Northridge California earthquake: implications for mainshocks motions. Bull. Seismol. Soc. Am. 86, 193–208. Wise, D.U., Funiciello, R., Parotto, M., Salvini, F., 1985. Topographic lineament swarms: clues to their origin from domain analysis of Italy. Geol. Soc. Am. Bull. 96, 952–967en
dc.description.obiettivoSpecifico5A. Energia e georisorseen
dc.description.journalTypeJCR Journalen
dc.description.fulltextrestricteden
dc.relation.issn0079-1946en
dc.relation.eissn1879-3568en
dc.contributor.authorPischiutta, M.en
dc.contributor.authorAnselmi, M.en
dc.contributor.authorCianfarra, P.en
dc.contributor.authorRovelli, A.en
dc.contributor.authorSalvini, F.en
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.departmentDipartimento di Scienze Geologiche, Università Roma 3, Largo San Leonardo Murialdo 1, Rome, Italyen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.departmentDipartimento di Scienze Geologiche, Università Roma 3, Largo San Leonardo Murialdo 1, Rome, Italyen
item.languageiso639-1en-
item.cerifentitytypePublications-
item.openairetypearticle-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
item.grantfulltextrestricted-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma2, Roma, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma1, Roma, Italia-
crisitem.author.deptDipartimento di Scienze Geologiche - Università degli Studi di Roma Tre.-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma1, Roma, Italia-
crisitem.author.deptRoma Tre University-
crisitem.author.orcid0000-0001-9991-5048-
crisitem.author.orcid0000-0001-6669-3880-
crisitem.author.orcid0000-0001-9396-4519-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
4_JPCE_Mefite.pdfMain article4.77 MBAdobe PDF
Show simple item record

WEB OF SCIENCETM
Citations 20

13
checked on Feb 10, 2021

Page view(s) 50

627
checked on Sep 7, 2024

Download(s)

33
checked on Sep 7, 2024

Google ScholarTM

Check

Altmetric