Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/9234
DC FieldValueLanguage
dc.contributor.authorallGiustini, F.; CNRen
dc.contributor.authorallBlessing, M.; BRGMen
dc.contributor.authorallBrilli, M.; CNRen
dc.contributor.authorallLombardi, S.; Università Roma La Sapienzaen
dc.contributor.authorallVoltattorni, N.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.authorallWidory, D.; UQAM/GEOTOPen
dc.date.accessioned2015-01-12T10:24:05Zen
dc.date.available2015-01-12T10:24:05Zen
dc.date.issued2013-03-06en
dc.identifier.urihttp://hdl.handle.net/2122/9234en
dc.description.abstractThe chemistry and isotope ratios of He, C (d13C) and H (dD) of free gases collected in the San Vittorino plain, an intramontane depression of tectonic origin, were determined to shed light on mantle degassing in central Italy. The C isotopic composition of CO2 (d13C–CO2 2.0‰to 3.8‰) and He isotope ratios (R/RA 0.12–0.27) were used to calculate the fraction of CO2 originating from mantle degassing vs. sedimentary sources. The results show that CO2 predominantly (average of 75%) derives from the thermo-metamorphic reaction of limestone. Between 6% and 22% of the CO2 in the samples derives from organic-rich sedimentary sources. The mantle source accounts for 0–6% of the total CO2; however, in two samples, located in proximity to the most important faults of the plain, the mantle accounts for 24% and 42%. The presence of faults and fractures allows upward gas migration from a deep source to the Earth’s surface, not only in the peri-Tyrrhenian sector, as generally reported by studies on natural gas emissions in central Italy, but also in the pre-Apennine and Apennine belts. Isotope ratios of CH4 (d13C–CH4 6.1‰ to 22.7‰; dD–CH4 9‰ to 129‰) show that CH4 does not appear to be related to mantle or magma degassing, but it is the product of thermal degradation of organic matter (i.e. thermogenic origin) and/or the reduction of CO2 (i.e. geothermal origin). Most of the samples appear to be affected by secondary microbial oxidation processes.en
dc.language.isoEnglishen
dc.publisher.nameElsevier Science Limiteden
dc.relation.ispartofApplied geochemistryen
dc.relation.ispartofseries/34 (2013)en
dc.subjectstable isotopeen
dc.subjectnoble gasesen
dc.subjectcarbon dioxideen
dc.subjectmethaneen
dc.subjectSan Vittorino Plainen
dc.titleDetermining the origin of carbon dioxide and methane in the gaseous emissions of the San Vittorino plain (Central Italy) by means of stable isotopes and noble gas analysisen
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber90.101en
dc.subject.INGV04. Solid Earth::04.02. Exploration geophysics::04.02.01. Geochemical explorationen
dc.identifier.doi10.1016/j.apgeochem.2013.02.015en
dc.relation.referencesAbrajano, T.A., Sturchio, N.C., Bohlke, J.K., Lyon, G.L., Poreda, R.J., Stevens, C.M., 1988. Methane–hydrogen gas seeps, Zambales Ophiolite, Philippines: deep or shallow origin? Chem. Geol. 71, 211–222. Agip, 1977. Temperature sotterranee. Inventario dei dati raccolti dall’Agip durante la ricerca e la produzione di idrocarburi in Italia. F.lli Brugoria, Segrate (MI). Allard, P., Jean-Baptiste, P., D’Alessandro, W., Parello, F., Parisi, B., Flehoc, C., 1997. Mantle derived helium and carbon in groundwater and gases of Mount Etna, Italy. Earth Planet. Sci. Lett. 148, 501–516. Annunziatellis, A., Beaubien, S.E., Ciotoli, G., Lombardi, S., Nisio, S., Nolasco, F., 2004. Studio dei parametri geologici e geochimici per la comprensione dei meccanismi genetici degli sprofondamenti nella piana di S. Vittorino. In: Proc. of Workshop: State of the Art on the Study of Sinkhole Phenomena and Role of the National and Local Government in the Territory Administration. Rome, Italy, pp. 63–82. Ballentine, C.J., Burgess, R., Marty, B., 2002. Tracing fluid origin, transport and interaction in the crust. In: Porcelli, D., Ballentine, C.J., Wieler, R. (Eds.), Noble Gases in Geochemistry and Cosmochemistry, vol. 47. Rev. Mineral. Geochem., pp. 539–614. Barberi, F., Carapezza, M.L., Ranaldi, M., Tarchini, L., 2007. Gas blowout from shallow boreholes at Fiumicino (Rome): induced hazard and evidence of deep CO2 degassing on the Tyrrhenian margin of central Italy. J. Volcanol. Geotherm. Res. 165, 17–31. Boni, C., Bono, P., Capelli, G., 1986. Schema Idrogeologico dell’Italia centrale, scala 1:500.000. Mem. Soc. Geol. It. 35, 991–1012. Boni, C., Capelli, G., Petitta, M., 1995. Carta idrogeologica dell’alta e media valle del F. Velino. System cart, Rome, Italy.Bosi, C., 1975. Osservazioni preliminari su faglie probabilmente attive nell’Appennino Centrale. Boll. Soc. Geol. It. 94, 827–859. Bottinga, Y., 1969. Calculated fractionation factors for carbon and hydrogen isotope exchange in the system calcite–CO2–graphite–methane–hydrogen and water vapour. Geochim. Cosmochim. Acta 33, 49–64. Bradley, A.S., Hayes, J.M., Summons, R.E., 2009. Extraordinary 13C enrichment of diether lipids at the lost city hydrothermal field indicates a carbon-limited ecosystem. Geochim. Cosmochim. Acta 73, 102–118. Capaccioni, B., Taran, Y., Tassi, F., Vaselli, O., Mangani, G., Macias, J.l., 2004. Source conditions and degradation processes of light hydrocarbons in volcanic gases: an example from El Chicho’n volcano (Chiapas State, Mexico). Chem. Geol. 206, 81–96. Caracausi, A., Italiano, F., Martinelli, G., Paonita, A., Rizzo, A., 2005. Long-term geochemical monitoring and extensive/compressive phenomena: the case study of the Umbria region (Central Apennines, Italy). Ann. Geophys. 48, 43–53. Cardellini, C., 2003. Carbon Dioxide Diffuse Degassing from Active Volcanoes and Non-volcanic Areas: Methods and Application to Southern Italy and Greece. Ph.D. Thesis, Univ. di Perugia, Perugia, Italy. Cavinato, G.P., Chiaretti, F., Cosentino, D., Serva, L., 1989. Caratteri geologicostrutturali del margine orientale della Conca di Rieti. Boll. Soc. Geol. It. 108, 207–218. Centamore, E., Nisio, S., 2002. Tettonica e sedimentazione (Lias-Pleistocene) nella media Valle del Salto (Rieti, Italia Centrale). Studi Geol. Camerti, Spec. vol. 2002/ 2, pp. 53–70. Centamore, E., Nisio, S., 2003. The effects of uplift and tilting in the Central Apennine. Quatern. Int. 101–102, 93–101. Centamore, E., Nisio, S., Rossi, D., 2009. The San Vittorino Sinkhole Plain: relationships between bedrock structure, sinking processes, seismic events and hydrothermal springs. Ital. J. Geosci. (Boll. Soc. Geol. It.) 128, 629–639. Cerling, T.E., Solomon, D.K., Quade, J., Bowman, J.R., 1991. On the isotopic composition of carbon in soil carbon dioxide. Geochim. Cosmochim. Acta 55, 3403–3405. Charlou, J.l., Donval, J.P., Fouquet, Y., Jean-Baptiste, P., Holm, N., 2002. Geochemistry of high H2 and CH4 vent fluids issuing from ultramafic rocks at the Rainbow hydrothermal field (36 140N, MAR). Chem. Geol. 191, 345–359. Chiodini, G., Caliro, S., Cardellini, C., Frondini, F., Inguaggiato, S., Matteucci, F., 2011. Geochemical evidence for and characterization of CO2 rich gas sources in the epicentral area of the Abruzzo 2009 earthquakes. Earth Planet. Sci. Lett. 304, 389–398. Chiodini, G., Cardellini, C., Amato, A., Boschi, E., Caliro, S., Frondini, F., Ventura, G., 2004. Carbon dioxide Earth degassing and seismogenesis in central and southern Italy. Geophys. Res. Lett. 31, L07615. Chiodini, G., Frondini, F., Cardellini, C., Parello, F., Peruzzi, L., 2000. Rate of diffuse carbon dioxide earth degassing estimated from carbon balance of regional aquifers: the case of central Apennine, Italy. J. Geophys. Res. 105, 8423–8434. Chiodini, G., Frondini, F., Ponziani, F., 1995. Deep structures and carbon dioxide degassing in Central Italy. Geothermics 24, 81–94. Cinti, D., Procesi, M., Tassi, F., Montegrossi, G., Sciarra, A., Vaselli, O., Quattrocchi, F., 2011. Fluid geochemistry and geothermometry in the western sector of the Sabatini Volcanic District and the Tolfa Mountains (Central Italy). Chem. Geol. 284, 160–181. Ciotoli, G., Di Filippo, M., Nisio, S., Romagnoli, C., 2001. La Piana di S. Vittorino: dati preliminari sugli studi geologici, strutturali, geomorfologici, geofisici e geochimici. Mem. Soc. Geol. It. 56, 297–308. Ciotoli, G., Guerra, M., Lombardi, S., Vittori, E., 1998. Soil gas survey for tracing seismogenic faults: a case study in the Fucino Basin, central Italy. J. Geophys. Res. 103, 23781–23794. Coleman, D.D., Risatti, J.B., Schoell, M., 1981. Fractionation of carbon and hydrogen isotopes by methane-oxidizing bacteria. Geochim. Cosmochim. Acta 45, 1033– 1037. Craig, H., Lupton, J.E., Horibe, Y., 1978. A mantle helium component in circum – Pacific volcanic gases: Hakone, the Marianas and Mt. Lassen. In: Alexander, E.C., Jr., Ozima, M. (Eds.), Terrestrial Rare Gases. Center for Academic Press, Tokyo, pp. 3–16. Crossey, L.J., Karlstrom, K.E., Springer, A., Newell, D., Hilton, D., Fischer, T., 2009. Degassing of mantle-derived CO2 and 3He from springs in the southern Colorado Plateau region–neotectonic connections and implications for groundwater systems. Geol. Soc. Am. Bull. 121, 1034–1053. Della Vedova, B., Bellini, S., Pellis, G., Squarci, P., 2001. Deep temperature and surface heat flow distribution. In: Vai, G.B., Martini, I.P. (Eds.), Anatomy of an Orogen, The Apennine and Adjacent Mediterranean Basins. Kluwer Academic Publishers, Dordrecht, pp. 65–67. Duchi, V., Minissale, A., Paolieri, M., Prati, F., Valori, A., 1992. Chemical relationship between discharging fluids in the Siena-Radicofani graben and the deep fluids produced by the geothermal fields of Mt Amiata, Torre Alfina and Latera (Central Italy). Geothermics 21, 401–413. Etiope, G., Martinelli, G., Caracausi, A., Italiano, F., 2007. Methane seeps and mud Volcanoes in Italy: gas origin, fractionation and emission to the atmosphere. Geophys. Res. Lett. 34, L14303. Farley, K.A., Neroda, E., 1998. Noble gases in the Earth’s mantle. Ann. Rev. Earth Planet. Sci. 26, 189–218. Federico, C., Aiuppa, A., Allard, P., Bellomo, S., Jean-Baptiste, P., Parello, F., Valenza, M., 2002. Magma-derived gas influx and water–rock interactions in the volcanic aquifer of Mt. Vesuvius, Italy. Geochim. Cosmochim. Acta 66, 963–981. Fiebig, J., Chiodini, G., Caliro, S., Rizzo, A., Spangenberg, J., Hunziker, J., 2004. Chemical and isotopic equilibrium between CO2 and CH4 in fumarolic gas discharges: generation of CH4 in arc magmatic–hydrothermal systems. Geochim. Cosmochim. Acta 68, 2321–2334. Frezzotti, M.L., Peccerillo, A., Panza, G.F., 2009. Carbonate metasomatism and CO2 lithosphere–asthenosphere degassing beneath the Western Mediterranean: an integrated model arising from petrological and geophysical data. Chem. Geol. 262, 108–120. Gherardi, F., Panichi, C., Gonfiantini, R., Magro, G., Scandiffio, G., 2005. Isotope systematics of C-bearing gas compounds in the geothermal fluids of Larderello, Italy. Geothermics 34, 442–470. Gianelli, G., 1985. On the origin of geothermal CO2 by metamorphic processes. Boll. Soc. Geol. It. 104, 575–584. Giggenbach, W.F., Sano, Y., Wakita, H., 1993. Isotopic composition of helium, and CO2 and CH4 contents in gases produced along the New Zealand part of a convergent plate boundary. Geochim. Cosmochim. Acta 57, 3427– 3455. Happell, J.D., Chanton, J.P., Showers, W.S., 1994. The influence of methane oxidation on the stable isotopic composition of methane emitted from Florida swamp forests. Geochim. Cosmochim. Acta 58, 4377–4388. Heinicke, J., Braun, T., Burgassi, P., Italiano, F., Martinelli, G., 2006. Gas flux anomalies in seismogenic zones in the Upper Tiber Valley, Central Italy. Geophys. J. Int. 167, 794–806. Holland, P.W., Emerson, D.E., 1990. The global helium 4 content of near-surface atmospheric air. In: Geochemistry of Gaseous Elements and Compounds. Theophrastus Pub. S.A, Athens, pp. 97–113. Hooker, P.J., Bertrami, R., Lombardi, S., O’Nions, R.K., Oxburgh, E.R., 1985. Helium-3 anomalies and crust–mantle interaction in Italy. Geochim. Cosmochim. Acta 49, 2505–2513. Horita, J., Berndt, M.E., 1999. Abiogenic methane formation and isotopic fractionation under hydrothermal conditions. Science 285, 1055–1057. Hosgormez, H., Etiope, G., Yalçin, M.N., 2008. New evidence for a mixed inorganic and organic origin of the Olympic Chimaera fire (Turkey): a large onshore seepage of abiogenic gas. Geofluids 8, 263–273. Iacono-Marziano, G., Gaillard, F., Scaillet, B., Pichavant, M., Chiodini, G., 2009. Role of non-mantle CO2 in the dynamics of volcano degassing: the Mount Vesuvius example. Geology 37, 319–322. Iannace, A., 1991. Ambienti deposizionali e processi diagenetici in successioni di piattaforma carbonatica del Trias superiore nei monti Lattari e Picentini (Salerno). PhD Thesis, Univ. of Naples, Italy. Inguaggiato, S., Pecoraino, G., D’Amore, F., 2000. Chemical and isotopical characterization of fluid manifestations of Ischia Island, Italy. J. Volcanol. Geotherm. Res. 99, 151–178. Italiano, F., Martinelli, G., Plescia, P., 2008. CO2 degassing over seismic areas: the role of mechanochemical production at the study case of Central Apennines. Pure Appl. Geophys. 165, 75–94. Javoy, M., Pineau, F., Delorme, H., 1986. Carbon and nitrogen isotopes in the mantle. Chem. Geol. 57, 41–62. Kerrick, D.M., Mckibben, M.A., Seward, T.M., Caldera, K., 1995. Convective hydrothermal CO2 emission from high heat flow regions. Chem. Geol. 121, 285–293. Kipfer, R., Aeschbach-Hertig, W., Peeters, F., Stute, M., 2002. Noble gases in lakes and ground waters. In: Porcelli, D., Ballentine, C.J., Wieler, R. (Eds.), Noble Gases in Geochemistry and Cosmochemistry, vol. 47. Rev. Mineral. Geochem., pp. 615– 700. Laurenzi, M., Stoppa, F., Villa, I., 1994. Eventi ignei monogenici e depositi piroclastici nel distretto ultra-alcalino Umbro-Laziale: revisione, aggiornamento e comparazione dei dati cronologici. Plinius 12, 61–65. Lewicki, J.l., Birkholzer, J.T., Tsang, C.F., 2006. Natural and Industrial Analogues for Release of CO2 from Storage Reservoirs: Identification of Features, Events, and Processes and Lessons Learned. Lawrence Berkeley National Laboratory Report LBNL-59784, February 2006. Liptay, K., Chanton, J., Czepiel, P., Mosher, B., 1998. Use of stable isotopes to determine methane oxidation in landfill cover soils. J. Geophys. Res. 103, 8243– 8250. Lombardi, S., Annunziatellis, A., Beaubien, S.E., Ciotoli, G., 2006. Near-surface gas geochemistry techniques to assess and monitoring CO2 geological sequestration sites – the use of natural analogue sites in Italy as field laboratories. In: Lombardi, S., Altunina, L.K., Beaubien, S.E. (Eds.), Advances in the Geological Storage of Carbon Dioxide NATO Science Series, vol. 65. Springer Publishing, Berlin, pp. 141–156. Mamyrin, B.A., Tolstikhin, I.N., 1984. Helium Isotopes in Nature. Elsevier, Amsterdam, Netherlands. Manfra, L., Masi, U., Turi, B., 1976. La composizione isotopica dei travertini del Lazio. Geol. Romana 15, 127–174. Marty, B., Trull, T., Lussiez, P., Basile, I., Tanguy, J.C., 1994. He, Ar, O, Sr and Nd isotope constraints on the origin and evolution of Mount Etna magmatism. Earth Planet. Sci. Lett. 126, 23–39. Mattavelli, L., Novelli, L., 1987. Geochemistry and habitat of natural gases in Italy. Org. Geochem. 13, 1–13. Michetti, A.M., Brunamonte, F., Serva, L., Whitney, R.A., 1994. Seismic hazard assessment from paleosismological evidence in the Rieti region, Central Italy. In: Serva, L., Slemmons, D.B. (Eds.), Perspectives in Paleoseismology, vol. 6. Bull. Assoc. Engin. Geol., Spec., Seattle, WA, USA, pp. 63–82. Minissale, A., 1991. Thermal springs in Italy: their relation to recent tectonics. Appl. Geochem. 6, 201–212. Minissale, A., 2004. Origin, transport and discharge of CO2 in central Italy. Earth Sci. Rev. 66, 89–141.Minissale, A., Evans, W., Magro, G., Vaselli, O., 1997. Multiple source components in gas manifestations from north central Italy. Chem. Geol. 142, 175–192. Minissale, A., Kerrick, D.M., Magro, G., Murrell, M.T., Paladini, M., Rihs, S., Sturchio, N.C., Tassi, F., Vaselli, O., 2002. Geochemistry of Quaternary travertines in the region north of Rome (Italy): structural, hydrologic and paleoclimate implications. Earth Planet. Sci. Lett. 203, 709–728. Minissale, A., Magro, G., Martinelli, G., Vaselli, O., Tassi, F., 2000. Fluid geochemical transect in the Northern Apennines (central-northern Italy): fluid genesis and migration and tectonic implications. Tectonophysics 319, 199–222. Morewood, N.G., Roberts, G.P., 2000. The geometry, kinematics and rates of deformation within an énechelon normal fault segment boundary, central Italy. J. Struct. Geol. 22, 1027–1047. Muffler, J.L.P., White, D.E., 1968. Origin of CO2 in the Salton Sea geothermal system, southeastern California, USA. In: XXIII International Geological Congress Proc., vol. 17, pp. 185–194. NASCENT, 2005. Natural Analogues for the Geological Storage of CO2. NASCENT Report 2005/6, March 2005. Ohmoto, H., Rye, R.O., 1979. Isotope of sulfur and carbon. In: Barnes, H.L. (Ed.), Geochemistry of Hydrothermal Deposits. John Wiley and Sons, New York, pp. 509–567. O’Nions, R.K., Oxburgh, E.R., 1988. Helium, volatile fluxes and the development of the continental crust. Earth Planet. Sci. Lett. 90, 315–331. Ozima, M., Podosek, F.A., 2002. Noble Gas Geochemistry. Cambridge University Press, Cambridge, UK. Panichi, C., Tongiorgi, E., 1976. Carbon isotopic composition of CO2 from springs, fumaroles, mofettes and travertines of central and southern Italy: a preliminary prospection method of geothermal area. In: Proc. 2nd UN Symp. Development and Use of Geothermal Energy, 20–29 May 1975, San Francisco, USA, pp. 815– 825. Parkhurst, D.L., Appelo, C.A.J., 1999. User’s Guide to PHREEQC (Version 2)—A Computer Program for Speciation, Batch-reaction, One-dimensional Transport, and Inverse Geochemical Calculations. US Geol. Surv. Water-Resour. Invest. Rep. 99-4259. Peccerillo, A., 2005. Plio-Quaternary Volcanism in Italy. Springer Verlag. Petitta, M., 2009. Hydrogeology of the middle valley of the Velino River and of the S. Vittorino Plain (Rieti, Central Italy). Ital. J. Eng. Geol. Environ. 1, 157–181. Petitta, M., Primavera, P., Tuccimei, P., Aravena, R., 2010. Interaction between deep and shallow groundwater systems in areas affected by Quaternary tectonics (Central Italy): a geochemical and isotope approach. Environ. Earth Sci. 63, 11– 30. Porcelli, D., Ballentine, C.J., Wieler, R., 2002. An overview of noble gas geochemistry and cosmochemistry. Rev. Mineral. Geochem. 47, 615–700. Proskurowski, G., Lilley, M.D., Seewald, J.S., Früh-Green, G.L., Olson, E.J., Lupton, J.E., Sylva, S.P., Kelley, D.S., 2008. Abiogenic hydrocarbon production at lost city hydrothermal field. Science 319, 604–607. Ray, M.C., Hilton, D.R., Muñoz, J., Fischer, T.P., Shaw, A.M., 2009. The effects of volatile recycling, degassing and crustal contamination on the helium and carbon geochemistry of hydrothermal fluids from the Southern Volcanic Zone of Chile. Chem. Geol. 266, 38–49. Risacher, F., Alonso, H., Salazar, C., 2002. Hydrochemistry of two adjacent acid saline lakes in the Andes of northern Chile. Chem. Geol. 187, 39–57. Sano, Y., Marty, B., 1995. Origin of carbon in fumarolic gas from island arcs. Chem. Geol. 119, 265–274. Sano, Y., Urabe, A., Wakita, H., Wushiki, H., 1993. Origin of hydrogen–nitrogen gas seeps, Oman. Appl. Geochem. 8, 1–8. Schoell, M., 1988. Multiple origins of methane in the Earth. Chem. Geol. 71, 1–10. Shepard, D., 1968. A two-dimensional interpolation function for irregularly-spaced data. In: Proc. 23rd Nat. Conf. ACM, ACM, pp. 517–524. Sherwood Lollar, B., Lacrampe-Couloume, G., Slater, G.F., Ward, J., Moser, D.P., Gihring, T.M., Lin, L.-H., Onstott, T.C., 2006. Unravelling abiogenic and biogenic sources of methane in the Earth’s deep subsurface. Chem. Geol. 226, 328–339. Stephen, H., Stephen, T., 1963. Solubilities of Inorganic and Organic Compounds, Binary Systems, vol. 1. Pergamon Press, London. Stoppa, F., Cundari, A., 1995. A new Italian carbonatite occurrence at Cupaello (Rieti) and its genetic significance. Contrib. Mineral. Petrol. 122, 275–288. Sugisaki, R., Mimura, K., 1994. Mantle hydrocarbons: abiotic or biotic? Geochim. Cosmochim. Acta 58, 2527–2542. Tassi, F., Fiebig, J., Vaselli, O., Nocentini, M., 2012. Origins of methane discharging from volcanic–hydrothermal, geothermal and cold emissions in Italy. Chem. Geol. 310–311, 36–48. Tedesco, D., 1997. Systematic variations in the 3He/4He ratio and carbon of fumarolic fluids from active volcanic areas in Italy: evidence for radiogenic 4He and crustal carbon addition by the subducting African plate? Earth Planet. Sci. Lett. 151, 255–269. Tedesco, D., Scarsi, P., 1999. Intensive gas sampling of noble gases and carbon at Vulcano Island (southern Italy). J. Geophys. Res. 104, 10499–10510. Tedesco, D., Allard, P., Sano, Y., Wakita, H., Pece, R., 1990. Helium-3 in subaerial and submarine fumaroles of Campi Flegrei caldera, Italy. Geochim. Cosmochim. Acta 54, 1105–1116. Tedesco, D., Tassi, F., Vaselli, O., Poreda, R.J., Darrah, T., Cuoco, E., Yalire, M.M., 2010. Gas isotopic signatures (He, C, and Ar) in the Lake Kivu region (western branch of the East African rift system): geodynamic and volcanological implications. J. Geophys. Res. 115, B01205. http://dx.doi.org/10.1029/2008JB006227. Tyler, S.C., Crill, P.M., Brailsford, G., 1994. 13C/12C fractionation of methane during oxidation in a temperate forested soil. Geochim. Cosmochim. Acta 58, 1625–1633. Weinlich, F.H., Brauer, K., Kampf, H., Strauch, G., Tesar, J., Weise, S.M., 1999. An active subcontinental mantle volatile system in the western Eger rift, Central Europe: gas flux, isotopic (He, C, N) and compositional fingerprints. Geochim. Cosmochim. Acta 63, 3653–3671. Welhan, J.A., 1988. Origins of methane in hydrothermal systems. Chem. Geol. 71, 183–198. Werner, C., Brantley, S., 2003. CO2 emissions from the Yellowstone volcanic system. Geochem. Geophys. Geosyst. 4 (7), 1061. http://dx.doi.org/10.1029/ 2002GC000473. Yang, T.F., Lan, T.F., Lee, H.F., Fu, C.C., Chuang, P.C., Lo, C.H., Chen, C.-H., Chen, C.T.A., Lee, C.S., 2005. Gas compositions and helium isotopic ratios of fluid samples around Kueishantao, NE offshore Taiwan and its tectonic implications. Geochem. J. 39, 469–480. Zhang, T., Krooss, B.M., 2001. Experimental investigation on the carbon isotope fractionation of methane during gas migration by diffusion through sedimentary rocks at elevated temperature and pressure. Geochim. Cosmochim. Acta 65, 2723–2742.en
dc.description.obiettivoSpecifico6A. Monitoraggio ambientale, sicurezza e territorioen
dc.description.journalTypeJCR Journalen
dc.description.fulltextrestricteden
dc.relation.issn0883-2927en
dc.relation.eissn1872-9134en
dc.contributor.authorGiustini, F.en
dc.contributor.authorBlessing, M.en
dc.contributor.authorBrilli, M.en
dc.contributor.authorLombardi, S.en
dc.contributor.authorVoltattorni, N.en
dc.contributor.authorWidory, D.en
dc.contributor.departmentCNRen
dc.contributor.departmentBRGMen
dc.contributor.departmentCNRen
dc.contributor.departmentUniversità Roma La Sapienzaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.departmentUQAM/GEOTOPen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptBRGM-
crisitem.author.deptCNR-
crisitem.author.deptUniversità La Sapienza-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma1, Roma, Italia-
crisitem.author.deptUQAM/GEOTOP-
crisitem.author.orcid0000-0002-7159-469X-
crisitem.author.orcid0000-0002-3940-8383-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
Giustini et al 2013.pdfmain article2.4 MBAdobe PDF
Show simple item record

WEB OF SCIENCETM
Citations 50

8
checked on Feb 10, 2021

Page view(s) 20

391
checked on Apr 24, 2024

Download(s)

35
checked on Apr 24, 2024

Google ScholarTM

Check

Altmetric