Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/9232
DC FieldValueLanguage
dc.contributor.authorallDi Luccio, F.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.authorallPersaud, P.; Caltech, Pasadena; Poly. Tech. Pomonaen
dc.contributor.authorallClayton, R.; Caltech, Pasadenaen
dc.date.accessioned2015-01-12T10:17:51Zen
dc.date.available2015-01-12T10:17:51Zen
dc.date.issued2014-11en
dc.identifier.urihttp://hdl.handle.net/2122/9232en
dc.description.abstractRayleigh wave group velocity dispersion measurements from local and regional earthquakes are used to interpret the lithospheric structure in the Gulf of California region. We compute group velocity maps for Rayleigh waves from 10 to 150 s using earthquakes recorded by broadband stations of the Network of Autonomously Recording Seismographs in Baja California and Mexico mainland, UNM in Mexico, BOR, DPP and GOR in southern California and TUC in Arizona. The study area is gridded in 120 longitude cells by 180 latitude cells, with an equal spacing of 10 × 10 km. Assuming that each gridpoint is laterally homogeneous, for each period the tomographic maps are inverted to produce a 3-D lithospheric shear wave velocity model for the region. Near the Gulf of California rift axis, we found three prominent low shear wave velocity regions, which are associated with mantle upwelling near the Cerro Prieto volcanic field, the Ballenas Transform Fault and the East Pacific Rise. Upwelling of the mantle at lithospheric and asthenospheric depths characterizes most of the Gulf. This more detailed finding is new when compared to previous surface wave studies in the region. A low-velocity zone in northcentral Baja at ∼28oN which extends east–south–eastwards is interpreted as an asthenospheric window. In addition, we also identify a well-defined high-velocity zone in the upper mantle beneath central-western Baja California, which correlates with the previously interpreted location of the stalled Guadalupe and Magdalena microplates. We interpret locations of the fossil slab and slab window in light of the distribution of unique post-subduction volcanic rocks in the Gulf of California and Baja California.We also observe a high-velocity anomaly at 50-km depth extending down to ∼130 km near the southwestern Baja coastline and beneath Baja, which may represent another remnant of the Farallon slab.en
dc.language.isoEnglishen
dc.publisher.nameWiley-Blackwellen
dc.relation.ispartofGeophysical Journal Internationalen
dc.relation.ispartofseries/199(2014)en
dc.subjectsurface wavesen
dc.subjectseismic tomographyen
dc.subjectdynamics of lithosphere and mantleen
dc.subjectcrustal structureen
dc.titleSeismic structure beneath the Gulf of California: a contribution from group velocity measurementsen
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber1861-1877en
dc.subject.INGV04. Solid Earth::04.06. Seismology::04.06.99. General or miscellaneousen
dc.identifier.doi10.1093/gji/ggu338en
dc.relation.referencesAmato, J.M., Lawton, T.F.,Mauel, D.J., Leggett,W.J., Gonz´alez-Le´on, C.M., Farmer, G.L. & Wooden, J.L., 2009. Testing the Mojave-Sonora megashear hypothesis: evidence from Paleoproterozoic igneous rocks and deformed Mesozoic strata in Sonora, Mexico, Geology, 37(1), 75–78. Barmin, M.P., Ritzwoller, M.H. & Levshin, A.L., 2001. A fast and reliable method for surface wave tomography, Pure appl. Geophys., 158, 1351– 1375. Bassin, C., Laske, G. & Masters, G., 2000. The current limits of resolution for surfacewave tomography in NorthAmerica, EOS, Trans. Am. geophys. Un., F897, 81. Bialas, R.W. & Buck, W.R., 2009. How sediment promotes narrow rifting: applications to the Gulf of California, Tectonics, 28, TC4014, doi:10.1029/2008TC002394. Brothers, D. et al., 2012. Farallon slab detachment and deformation of the Magdalena shelf, southern Baja California, Geophys. Res. Lett., 39, L09307, doi:10.1029/2011GL050828. Calmus, T., Pallares, C., Maury, R.C., Aguill´on-Robles, A., Bellon, H., Benoit, M. & Michaud, F., 2011. Volcanic markers of the post-subduction evolution of Baja California and Sonora, Mexico: slab tearing versus lithospheric rupture of the Gulf of California, Pure appl. Geophys., 168, 1303–1330. Campos-Enr´ıquez, J.O., Hernandez-Quintero, E. & Lozada-Zumaeta, M., 2005. The crust at northwesternMexico interpreted fromMagsat anomalies: implications for the existence of the Mojave-Sonora megashear, in The Mojave-Sonora Megashear Hypothesis: Development, Assessment, and Alternatives, Geological Society of America Special Paper 393, pp. 199–208, eds Anderson, T.H., Nourse, J.A., McKee, J.W.&Steiner,M.B., doi:10.1130/2005.2393(06). Castillo, R.P., 2008. Origin of the adakite-high-Nb basalt association and its implications for postsubduction magmatism in Baja California, Mexico, Bull. geol. Soc. Am., 120, 451–462. Clayton, R.W. et al., 2004. The NARS-Baja seismic array in the Gulf of California Rift Zone, MARGINS Newsletter No. 13. Corti, G., VanWijk, J., Bonini,M., Sokoutis, D., Cloetingh, S., Innocenti, F. & Manetti, P., 2003. Transition from continental break-up to punctiform seafloor spreading: how fast, symmetric and magmatic, Geophys. Res. Lett., 30(12), doi:10.1029/2003GL017374. Deschamps, F., Lebedev, S., Meier, T. & Trampert, J., 2008. Azimuthal anisotropy of Rayleigh-wave phase velocities in the east-central United States, Geophys. J. Int., 173, 827–843.Dorsey, R.J. & Umhoefer, P.J., 2012. Influence of sediment input and platemotion obliquity on basin development along an active oblique-divergent plate boundary:Gulf of California and Salton Trough, in Tectonics of Sedimentary Basins: Recent Advances, eds Busby, C. & Azor, A., Blackwell Publishing. Efron, B. & Tibshirani, R.J., 1993. An Introduction to the Bootstrap, Chapman and Hall. Gastil, R.G., Krummenacher, D. & Minch, J., 1979. The record of Cenozoic volcanism around the Gulf of California, Bull. geol. Soc. Am., 90, 839– 857. Hazler, S.E., Sheehan, A.F., McNamara, D.E. & Walter, W.R., 2001. Onedimensional shear velocity structure of Northern Africa from Rayleigh wave group velocity dispersion, Pure appl. Geophys., 158, 1475– 1493. Helenes, J. & Carre˜no, A.L., 1999. Neogene sedimentary evolution of Baja California in relation to regional tectonics, J. S. Am. Earth. Sci., 12, 589– 605. Herrmann, R.B., 1973. Some aspects of band-pass filtering of surfacewaves, Bull. seism. Soc. Am., 63(2), 663–671. Herrmann, R.B.&Ammon, C.J., 2002. Computer programs in seismology— surface waves, receiver functions and crustal structure, Saint Louis University. Available at: http://www.eas.slu.edu/eqc/eqccps.html (last accessed September 2014). Kennett, B.L.N. & Engdahl, E.R., 1991. Traveltimes for global earthquake location and phase identification, Geophys. J. Int., 105, 429–465. Lebedev, S., Adam, J.M.-C. & Meier, T., 2013. Mapping the Moho with seismic surface waves: a review, resolution analysis, and recommended inversion strategies, Tectonophysics, 609, 377–394. Levshin, A.L. & Ritzwoller, M.H., 2001. Automatic detection, extraction, and measurement of regional surface waves, Pure appl. Geophys., 158, 1531–1545. Levshin, A.L., Ritzwoller, M.H. & Resovsky, J.S., 1999. Source effects on surface wave group travel times & group velocity maps, Phys. Earth planet. Inter., 115, 293–312. Lizarralde, D. et al., 2007. Variation in styles of rifting in the Gulf of California, Nature, 448, 466–469. Long, M.D., 2010. Frequency-dependent shear wave splitting and heterogeneous anisotropic structure beneath the Gulf of California region, Phys. Earth planet. Inter., 182, 59–72. Michaud, F. et al., 2006. Oceanic-ridge subduction vs. slab break off: plate tectonic evolution along the Baja California Sur continental margin since 15 Ma, Geology, 34(1), 13–16. Miller, N.C. & Lizarralde, D., 2013. Thick evaporates and early rifting in the Guaymas basin, Gulf of California, Geology, 41(2), 283–286. Negrete-Aranda, R. & Ca˜n´on-Tapia, E., 2008. Post-subduction volcanism in the Baja California Peninsula, Mexico: the effects of tectonic reconfiguration in volcanic systems, Lithos, 102, 392–414. Negrete-Aranda, R., Contreras, J. & Spelz, R.M., 2013. Viscous dissipation, slab melting, and post-subduction volcanism in the south-central Baja California, Geosphere, 9(6), doi:10.1130/GES00901.1. Obrebski,M. & Castro, R.R., 2008. Seismic anisotropy in northern and central Gulf of California region, Mexico, from teleseismic receiver functions and newevidence of possible plate capture, J. geophys. Res., 113, B03301, doi: 10.1029/2007JB005156. Oskin, M., Stock, J. & Martin-Barajas, A., 2001. Rapid localization of Pacific-North America plate motion in the Gulf of California, Geology, 29(5), 459–462. Paige, C.C. & Saunders, M.A., 1982. LSQR: an algorithm for sparse linear equations and sparse least squares, ACMTrans.Math. Softw., 8(1), 43–71. Pallares, C. et al., 2007. Slab-tearing following ridge-trench collision: evidence from Miocene volcanism in Baja California, M´exico, J. Volc. Geotherm. Res., 161, 95–117. Pasyanos, M.E. & Walter, W.R., 2002. Crust and upper-mantle structure of North Africa, Europe and the Middle East from the inversion of surface waves, Geophys. J. Int., 149, 463–481. Persaud, P., Stock, J.M., Steckler, M.S., Mart´ın-Barajas, A., Diebold, J.B., Gonz´alez-Fern´andez, A. & Mountain, G.S., 2003. Active deformation and shallow structure of the Wagner, Consag, and Delf´ın basins, northern Gulf of California, Mexico, J. geophys. Res., 108, 2355, doi:10.1029/2002JB001937. Persaud, P., P´erez-Campos, X. & Clayton, R.W., 2007. Crustal thickness variations in themargins of the Gulf of California from receiver functions, Geophys. J. Int., 170(2), 687–699. Ritzwoller,M.H.&Levshin, A.L., 1998. Eurasian surfacewave tomography: group velocities, J. geophys. Res., 103(B3), 4839–4878. Rodi,W.L., Glover, P., Li, T.M.C. & Alexander, S.S., 1975. A fast, accurate method for computing group-velocity partial derivatives for Rayleigh and Love modes, Bull. seism. Soc. Am., 65, 1105–1114. Romo-Jones, J.M., 2002. Conductividad el´ectrica de la lit´osfera de Baja California en la regi´on de Vizca´ıno, PhD thesis, Centro de Investigaci´on Cient´ıfica y de 797 Educaci´on Superior de Ensenada (CICESE), 199. Savage, B. & Wang, Y., 2012. Integrated model of the crustal structure in the Gulf of California extensional province, Bull. seism. Soc. Am., 102(2), 878–885. Sawlan,M.G., 1991. Magmatic evolution of the Gulf of California rift, in The Gulf and Peninsula Province of the Californias, American Association of Petroleum Geologists Memoir 47, pp. 217–229, eds. Dauphin, J.P. & Simoneit, B.R.T. Sumy, D.F., Gaherty, J.B., Kim, W.Y., Diehl, T. & Collins, J.A., 2013. The mechanisms of earthquakes and faulting in the southern Gulf of California, Bull. seism. Soc. Am., 103(1), 487–506. Trampert, J., Paulssen, H., van Wettum, A., Ritsema, J., Clayton, R.W., Castro, R., Rebollar, C. & Perez-Vertti, A., 2003. New array monitors seismic activity near the Gulf of California in Mexico, EOS, Trans. Am. geophys. Un., 84(4), 29–32. van Benthem, S.A.C., Valenzuela, R.W., Obrebski, M. & Castro, R.R., 2008. Measurements of upper mantle shear wave anisotropy from stations around the southern Gulf of California, Geofis. Int., 47(2), 127–144. van der Lee, S. & Frederiksen, A., 2005. Surface wave tomography applied to North American upper mantle, in Seismic Earth, Array Analysis of Broadband Seismograms, Geophysical Monograph Series 157, pp. 67– 80, eds Levander, A. & Nolet, G., American Geophysical Union. Wang, Y., Forsyth, D.W. & Savage, B., 2009. Convective upwelling in the mantle beneath the Gulf of California, Nature, 462, doi:10.1038/nature08552. Wang, Y., Forsyth, D.W., Rau, C.J., Carriero, N., Schmandt, B., Gaherty, J.B. & Savage, B., 2013. Fossil slab attached to unsubducted fragments of the Farallon plate, Proc. Natl. Acad. Sci. USA, 110(14), 5342–5346. Wessel, P. & Smith, W.H.F., 1998. New version of the Generic Mapping Tools released, EOS, Trans. Am. geophys. Un., 79(47), 579. Zhang, X., Paulssen, H., Lebedev, S. & Meier, T., 2009. 3D shear velocity structure beneath the Gulf of California from Rayleigh wave dispersion, Earth planet. Sci. Lett., 279, 255–262.en
dc.description.obiettivoSpecifico1T. Geodinamica e interno della Terraen
dc.description.journalTypeJCR Journalen
dc.description.fulltextrestricteden
dc.relation.issn0956-540Xen
dc.relation.eissn1365-246Xen
dc.contributor.authorDi Luccio, F.en
dc.contributor.authorPersaud, P.en
dc.contributor.authorClayton, R.en
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.departmentCaltech, Pasadena; Poly. Tech. Pomonaen
dc.contributor.departmentCaltech, Pasadenaen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma1, Roma, Italia-
crisitem.author.deptCaltech-
crisitem.author.orcid0000-0002-9924-3736-
crisitem.author.orcid0000-0003-3462-7023-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
diluccioGJI2014.pdf12.41 MBAdobe PDF
Show simple item record

WEB OF SCIENCETM
Citations

21
checked on Feb 10, 2021

Page view(s)

282
checked on Apr 24, 2024

Download(s)

28
checked on Apr 24, 2024

Google ScholarTM

Check

Altmetric