Please use this identifier to cite or link to this item:
Authors: Viezzoli, Andrea 
Teatini, Pietro 
Tosi, Luigi 
Title: Advances in Surface-Groundwater Modelling in Lagoon Environment with Airborne Electromagnetics and High Resolution Seismic: Example from the Venice Lagoon
Issue Date: 10-May-2010
Keywords: Airborne Electromagnetics
Venice Lagoon
AEM data
High Resolution Seismic
Subject Classification04. Solid Earth::04.02. Exploration geophysics::04.02.04. Magnetic and electrical methods 
Abstract: Lagoon environments are very important for groundwater modeling in costal areas, they are delicate and in rapid evolution due to global climatic changes. Airborne electromagnetics (AEM)is a very valuable methodology that can provide high density, high quality data to produce 3D hydrogeological models to depths in excess of hundred meters below surface water column. We present the results from the SkyTEM Venice lagoon survey of 2009, integrated with data from very high resolution seismic survey. The AEM data results enhance greatly the understanding of the hydrogeology and surface-groundwater interactions in the lagoon area, where indirect measurements abound but wells are missing. For example, there is clear evidence of fresh water aquifers underneath the central part of the lagoon, at depth of about 40 m. The near surface part of the AEM data compare well with seismic data, showing that main reflectors come from the interface between the superficial Late Pleistocene looser, saline water saturated sediments and the deeper, more compact and fresher Holocene sediments. There is also clear evidence of submarine groundwater discharge in the lagoon, of paleorivers, and a possible indication of gas seepage trough shallow sediments. Seismic and AEM provide complimentary datasets to discriminate between pore water salinity, lithology and gas. Seismic horizons can actually be included during inversion of AEM data, producing more robust output. AEM data from the southern part of the survey that crosses the shore line and continued also onshore allow a clear mapping of the saline water intrusion inland, and highlight the relationship between pore water salinity of the lagoon sediments and spatial distribution of salt marshes. The latter seem to act like salt sinks, increasing sediments electrical conductivity.
Appears in Collections:Conference materials

Files in This Item:
File Description SizeFormat 
0657_GC2010_Advances_in_Surface-Groundwater_Modelling_in_Lagoon_Environment(2).pdfMain article895.15 kBAdobe PDFView/Open
Show full item record

Page view(s)

Last Week
Last month
checked on Sep 25, 2018


checked on Sep 25, 2018

Google ScholarTM