Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/9023
DC FieldValueLanguage
dc.contributor.authorallCarbone, D.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Catania, Catania, Italiaen
dc.contributor.authorallGibert, D.; Institut de Physique du Globe de Paris (UMR CNRS 7154), Sorbonne Paris Cité, Paris, Franceen
dc.contributor.authorallMarteau, J.; Institut de Physique Nucléaire de Lyon (UMR CNRS 5822), Lyon, Franceen
dc.contributor.authorallDiament, M.; Institut de Physique du Globe de Paris (UMR CNRS 7154), Sorbonne Paris Cité, Paris, Franceen
dc.contributor.authorallZuccarello, L.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Catania, Catania, Italiaen
dc.contributor.authorallGalichet, E.; Conservatoire National des Arts et Métiers, Paris, Franceen
dc.date.accessioned2014-06-13T12:09:12Zen
dc.date.available2014-06-13T12:09:12Zen
dc.date.issued2013-10-25en
dc.identifier.urihttp://hdl.handle.net/2122/9023en
dc.description.abstractInteractions of conduit geometry with gas–liquid flows control volcanic activity, implying that the evaluation of volcanic hazards requires quantitative understanding of the inner structure of the volcano. The more established geophysical imaging techniques suffer from inherent ambiguity, may require spatially dense measurements in active areas and may not provide sufficient spatial resolution in the uppermost part of the conduit system. It is thus desirable to develop new imaging techniques allowing a better spatial resolution of a volcano's upper feeding system, with reduced ambiguity and a low level of risk for operators. Muon particles can be utilized to image the internal density distribution of volcanic structures. The principle of muon radiography is essentially the same as X-ray radiography, except for substituting penetrating particles in place of photons. Muons are more attenuated by higher density parts inside the target and thus information about its inner structure are obtained from the differential muon absorption. We report on a muon-imaging experiment that was conducted at Mt Etna in 2010. The target structure was one of the summit craters of the volcano. This experiment was performed using a muon telescope suitably designed to withstand the harsh conditions in the summit zone of a high volcano. We found a marked difference between synthetic and observed attenuation of muons through the target. This discrepancy is likely due to the bias on the observed flux, arising from false muon tracks. They are caused by low-energy particles that, by chance, hit simultaneously the two matrixes of the telescope, leading to detection of a false positive. We separated the useful from the unwanted signal through a first-order model of the background noise. The resulting signal is compared with the corresponding synthetic flux. Eventually, we found regions of higher- and lower-than-expected muon flux, that are possibly related to inner features of the target crater.en
dc.language.isoEnglishen
dc.publisher.nameWiley-Blackwellen
dc.relation.ispartofGeophysical Journal Internationalen
dc.relation.ispartofseries2/196 (2013)en
dc.subjectTomography; Volcano monitoring; Volcanic hazards and risksen
dc.titleAn experiment of muon radiography atMt Etna (Italy)en
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber633-643en
dc.identifier.URLhttp://gji.oxfordjournals.org/content/196/2/633en
dc.subject.INGV04. Solid Earth::04.03. Geodesy::04.03.06. Measurements and monitoringen
dc.identifier.doi10.1093/gji/ggt403en
dc.relation.referencesAiuppa, A., Cannata, A., Cannavò, F., Di Grazia, G., Ferrari, F., Giudice, G., Gurrieri, S., Liuzzo, M., Mattia, M., Montalto, P., Patanè D. & Puglisi, G., 2010. Patterns in the recent 2007-2008 activity of Mount Etna volcano investigated by integrated geophysical and geochemical observations, Geochem. Geophys. Geosyst., 11, Q09008, doi: 10.1029/2010GC003168. Allard, P., Burton, M. & Murè, F., 2005. Spectroscopic evidence for a lava fountain driven by previously accumulated magmatic gas, Nature, 433, 407-410. Allkofer, O.C. & Grieder, P.K.F., 1984. Cosmic Rays on Earth, Nr 25-1, 379 pp., Fachinformationszentrum Energie, Physik, Mathematik, Karsruhe, Germany. Andronico, D., Cristaldi, A. & Scollo, S., 2008. The 4–5 September 2007 lava fountain at South-East Crater of Mt Etna, Italy, J. Volcanol. Geotherm. Res., 173, 325–328. Behncke, B. & Neri, M., 2003. The July–August 2001 eruption of Mt. Etna (Sicily), Bull. Volcanol., 65, 461–476. Behncke, B., Neri, M., Pecora, E., Zanon, V., 2006. The exceptional activity and growth of the Southeast Crater, Mount Etna (Italy), between 1996 and 2001, Bull. Volcanol., 69, 149–173. Bruno, V., Mattia, M., Aloisi, M., Palano, M., Cannavò, F. & Holt, W.E., 2012. Ground deformations and volcanic processes as imaged by CGPS data at Mt. Etna (Italy) between 2003 and 2008, J. Geophys. Res., 117, B07208, doi:10.1029/2011JB009114. Bugaev, E.V., Misaki, A., Naumov, V. A., Sinegovskaya, T. S., Sinegovsky, S. I. & Takahashi, N., 1998. Atmospheric muon flux at sea level, underground, and underwater, Phys. Rev. D., 58, 054001. Carbone, D., Zuccarello, L., Saccorotti, G. & Greco, F., 2006. Analysis of simultaneous gravity and tremor anomalies observed during the 2002-2003 Etna eruption, Earth Plan. Sc. Lett., 245, 616–629. Carbone, D., Zuccarello, L. & Saccorotti, G., 2008. Geophysical indications of magma uprising at Mt Etna during the December 2005 to January 2006 non-eruptive period, Geoph. Res. Lett., 35, L06305, doi:10.1029/2008GL033212. Daniel, R.R. & Stephens, S.A., 1974. Cosmic-ray-produced electrons and gamma rays in the atmosphere, Revs. Geophysics & Space Sci., 12, 233-258. De Barros, L., Lokmer, I., Bean, C.J., O'Brien, G.S., Saccorotti, G., Métaxian, J.-P., Zuccarello, L. & Patanè, D., 2011. Source Mechanism of Long Period events recorded by a high density seismic network during the 2008 eruption on Mt Etna, J. Geophys. Res., 116, B01304, DOI: 10.1029/2010JB007629. De Gori, P., Chiarabba, C. & Patanè, D., 2005. Qp structure of Mount Etna: Constraints for the physics of the plumbing system, J. Geophys. Res., 110, B05303. Deroussi, S., Diament, M., Feret, J. B., Nebut, T. & Staudacher, Th., 2009. Localization of cavities in a thick lava flow by microgravimetry, J. Volcanol. Geotherm. Res., 184, 193–198, doi:10.1016/j.jvolgeores.2008.10.002. Di Grazia, G., Falsaperla, S. & Langer, H., 2006. Volcanic tremor location during the 2004 Mount Etna lava effusion, Geophys. Res. Lett., 33, L04304, doi:10.1029/2005GL025177. Di Lieto, B., Saccorotti, G., Zuccarello, L., La Rocca, M., Scarpa, R., 2007. Continuous tracking of volcanic tremor at Mount Etna, Italy, Geophys. J. Int., 169 (2), 699-705. Di Stefano, R. & Chiarabba, C., 2002. Active source tomography at Mt. Vesuvius: Constraints for the magmatic system, J. Geophys. Res., 107(B11), 2278, doi:10.1029/2001JB000792. Favalli, M, Fornaciai, A. & Pareschi, M.T., 2009. LiDAR strip adjustment: application to volcanic areas, Geomorphology, 111, 123-135, doi:10.1016/j.geomorph.2009.04.010. Ferlito, C., Viccaro, M., Nicotra, E. & Cristofolini, R., 2010. Relationship between the flank sliding of the South East Crater (Mt. Etna, Italy) and the paroxysmal event of November 16, 2006, Bull. Volcanol., 72, 1179–1190. Gaisser, T., 1990. Cosmic Rays and Particle Physics, 296 pp., Cambridge University Press, New York. Gibert, D., Beauducel, F., D´eclais, Y., Lesparre, N., Marteau, J., Nicollin, F. & Tarantola, A., 2010. Muon tomography: plans for observations in the Lesser Antilles, Earth Planets Space, 62, 153–165. Gilbert, J. S. & Lane, S. J., 2008. The consequences of fluid motion in volcanic conduits, in: Fluid Motions in Volcanic Conduits: A Source of Seismic and Acoustic Signals, pp 1-10, ed. Lane S.J. & Gilbert J. S., Geological Society, Special Publications, 307, London. Groom, D.E., Mokhov, N.V. & Striganov, S.I., 2001. Muon stopping power and range tables 10 MeV–100 TeV, At. Data Nucl. Data Tables, 78 (2), 183-356. Heck, D., Knapp, J., Capdevielle, J.N., Schatz, G. & Thouw, T., 1998. CORSIKA: A Monte Carlo code to simulate extensive air showers. Karlsruhe University, Forschungszentrum Karlsruhe, Report FZKA 6019. Kudryavtsev, V. A., 2009. Muon simulation codes MUSIC and MUSUN for underground physics, Compt. Phys. Commun., 180, 339–346, doi:10.1016/j.cpc.2008.10.013. Lesparre, N., Gibert, D., Marteau, J., D´eclais, Y., Carbone, D. & Galichet, E., 2010. Geophysical muon imaging: feasibility and limits, Geophys. J. Int., 183, 1348-1361. Lesparre, N., Gibert, D., Marteau, J., Komorowski, J. C., Nicollin, F. & Coutant, O., 2012. Density Muon Radiography of La Soufrière of GuadeloupeVolcano: Comparison with Geological, Electrical Resistivity and Gravity data, Geophys. J. Int., 185, 1-14. Lokmer, I., Bean, C.J., Saccorotti, G. & Patane, D., 2007. Moment-tensor inversion of LP events recorded on Etna in 2004 using constraints obtained from wave simulation tests, Geophysical Research Letters, 34, L22316. Marteau, J., 2010. The OPERA global readout and GPS distribution system, Nucl. Instrum. Meth. A, 617, 291\u2013293, doi:10.1016/j.nima.2009.10.095. Marteau, J., Gibert, D., Lesparre, N., Nicollin, F., Noli, P. & Giacoppo, F., 2012. Muons tomography applied to geosciences and volcanology, Nucl. Instrum. Meth. A, 617, 291-293, doi: 10.1016/j.nima.2011.11.061. Nagamine, K., Iwasaki, M., Shimomura, K. & Ishida, K., 1995. Method of probing inner-structure of geophysical substance with the horizontal cosmic-ray muons and possible application to volcanic eruption prediction, Nucl. Instrum. Meth. A, 356, 585-595. Nagamine, K., 2003. Introductory Muon Science. 208 pp., Cambridge University Press, Cambridge. Neddermeyer, S. H. & Anderson, C. D., 1937. Note on the nature of cosmic ray particles, Phys. Rev., 51, 884–886. Neri, M. & Acocella, V., 2006. The 2004–2005 Etna eruption: Implications for flank deformation and structural behaviour of the volcano, J. Volcanol. Geotherm. Res., 158, 195–206. Nettleton, L. L., 1939. Determination of density for reduction of gravimeter observations, Geophysics, 4, 176–183. Patanè, D., Aiuppa, A., Aloisi, M., Behncke, B., Cannata, A., Coltelli, M., Di Grazia, G., Gambino, S., Gurrieri, S., Mattia, M., & Salerno, G., 2013. Insights into magma and fluid transfer at Mount Etna by a multiparametric approach: A model of the events leading to the 2011 eruptive cycle, J. Geophys. Res. Solid Earth, 118, doi:10.1002/jgrb.50248. Reyna, D., 2006. A Simple parameterization of the cosmic-ray muon momentum spectra at the surface as a function of zenith angle, preprint, arXiv:hep-ph/0604145. Rymer, H., 1989, A contribution to precision microgravity data analysis using LaCoste and Romberg gravity meters, Geophys. J., 97, 311–322. Saccorotti, G., Lokmer, I., Bean, C.J., Di Grazia, G. & Patane, D., 2007. Analysis of sustained long-period activity at Etna Volcano, Italy, J. Volcanol. Geotherm. Res., 160 (3-4), 340-354. Saracino, G. & Cârloganu, C., 2012. Looking at volcanoes with cosmic-ray muons, Physics Today, 65 (12), 60-61. Schiavone, D, Loddo, M., 2007. 3-D density model of Mt. Etna Volcano (Southern Italy), J. Volcanol. Geotherm. Res., 164, 161–175. Sciotto, M., Cannata, A., Di Grazia, G., Gresta, S., Privitera, E., & Spina, L., 2011. Seismoacoustic investigations of paroxysmal activity at Mt. Etna volcano: New insights into the 16 November 2006 eruption, J. Geophys. Res., 116, B09301, doi:10.1029/2010JB008138. Shinohara H. & Tanaka, H.K.M., 2012. Conduit magma convention of a rhyolitic magma: constraints from cosmic-ray muon radiography of Iwodake, Satsuma-Iwojima volcano, Japan, Earth Plan. Sc. Lett., 349–350, 87–97. Tanaka, H.K.M., Nakano, T., Takahashi, S., Yoshida, J., Takeo, M., Oikawa, J., Ohminato, T., Aoki, Y., Koyama, E., Tsuji, H., Niwa, K., 2007. High resolution imaging in the inhomogeneous crust with cosmic ray muon radiography: the density structure below the volcanic crater floor of Mt. Asama, Japan, Earth planet. Sci. Lett., 263, 104–113. Tanaka, H.K.M., Uchida, T., Tanaka, M., Shinohara, H., Taira, H., 2009. Cosmic-ray muon imaging of magma in a conduit: degassing process of Satsuma-Iwojima Volcano, Japan. Geophys. Res. Lett., 36, L01304, doi:10.1029/2008GL036451. Tanaka, H.K.M. & Muraoka, H., 2013. Interpreting muon radiographic data in a fault zone: possible application to geothermal reservoir detection and monitoring, Geosci. Instrum. Method. Data Syst., 2, 145–150. Tiede, C., Camacho, A. G., Gerstenecker, C., Fernández, J., Suyanto, I., 2005. Modeling the density at Merapi volcano area, Indonesia, via the inverse gravimetric problem, Geochem. Geophys. Geosyst., 6, Q09011, doi:10.1029/2005GC000986.en
dc.description.obiettivoSpecifico2V. Dinamiche di unrest e scenari pre-eruttivien
dc.description.journalTypeJCR Journalen
dc.description.fulltextrestricteden
dc.relation.issn0956-540Xen
dc.relation.eissn1365-246Xen
dc.contributor.authorCarbone, D.en
dc.contributor.authorGibert, D.en
dc.contributor.authorMarteau, J.en
dc.contributor.authorDiament, M.en
dc.contributor.authorZuccarello, L.en
dc.contributor.authorGalichet, E.en
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OE, Catania, Italiaen
dc.contributor.departmentInstitut de Physique du Globe de Paris (UMR CNRS 7154), Sorbonne Paris Cité, Paris, Franceen
dc.contributor.departmentInstitut de Physique Nucléaire de Lyon (UMR CNRS 5822), Lyon, Franceen
dc.contributor.departmentInstitut de Physique du Globe de Paris (UMR CNRS 7154), Sorbonne Paris Cité, Paris, Franceen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OE, Catania, Italiaen
dc.contributor.departmentConservatoire National des Arts et Métiers, Paris, Franceen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OE, Catania, Italia-
crisitem.author.deptInstitut de Physique du Globe de Paris (UMR CNRS 7154), Sorbonne Paris Cité, Paris, France-
crisitem.author.deptInstitut de Physique Nucléaire de Lyon (UMR CNRS 5822), Lyon, France-
crisitem.author.deptInstitut de Physique du Globe de Paris (UMR CNRS 7154), Sorbonne Paris Cité, Paris, France-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia, Sezione di Pisa, Italy-
crisitem.author.deptConservatoire National des Arts et Métiers, Paris, France-
crisitem.author.orcid0000-0003-2566-6290-
crisitem.author.orcid0000-0003-0094-9577-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
Carbone_et_al_GJI_2013.PDFMain article9.52 MBAdobe PDF
Show simple item record

WEB OF SCIENCETM
Citations 20

41
checked on Feb 10, 2021

Page view(s) 20

342
checked on Apr 17, 2024

Download(s) 50

69
checked on Apr 17, 2024

Google ScholarTM

Check

Altmetric