Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/8998
DC FieldValueLanguage
dc.contributor.authorallPessina, V.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Milano-Pavia, Milano, Italiaen
dc.contributor.authorallFiorini, E.; Eucentre Paviaen
dc.date.accessioned2014-05-30T13:43:18Zen
dc.date.available2014-05-30T13:43:18Zen
dc.date.issued2014en
dc.identifier.urihttp://hdl.handle.net/2122/8998en
dc.description.abstractMorphometric analyses of high resolution digital elevation models (DEM), with the support of Geographic Information Systems (GIS), have been implemented to provide a practical tool for the identification on a large scale of sites where, according to the EC8 prescriptions, a topography amplification is expected. An ad hoc procedure for the hilltop ridge detection was implemented to be used in the morphological characterization, together with the standard GIS sequence of steps. The proposed method allowed the fast classification of more than 800 seismic recording stations located on the Alps and the Apennine, according to the indications of the current European norm and the Italian seismic code. The aim is to improve the characterization of the stations of seismic archives, in the view of a potential cross-checking of observed amplification with the attributed site class category.en
dc.language.isoEnglishen
dc.publisher.nameElsevier Science Limiteden
dc.relation.ispartofSoil Dynamics and Earthquake Engineeringen
dc.relation.ispartofseries/63 (2014)en
dc.subjectDEMen
dc.subjectGeographic Information systemen
dc.subjectRidgeen
dc.subjectMorphometric analysisen
dc.subjectSeismic amplificationen
dc.subjectRecording stationen
dc.subjectSeismic codeen
dc.titleA GIS procedure for fast topographic characterization of seismic recording stationsen
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber248-258en
dc.subject.INGV04. Solid Earth::04.06. Seismology::04.06.99. General or miscellaneousen
dc.identifier.doi10.1016/j.soildyn.2014.04.002en
dc.relation.references[1] Panizza M.(1991).Geomorphology and seismc risk. Earth-Science Reviews, 31, 11-20. [2] Paolucci, R. (2002). Amplification of earthquake ground motion by steep topographic irregularities. Earthq. Eng. Struct. Dyn., 31, 1831-1853. [3] A.A.V.V. (1986). Elementi per una guida alle indagini di micro zonazione sismica - Progetto finalizzato “Geodinamica”, Faccioli E. (Ed.) Quaderni de “La ricerca scientifica”, n. 114, vol. 7, Roma, 72–82 (in Italian). [4] Faccioli E., Vanini M., Frassine L. (2002) "Complex" site effects in earthquake ground motion, including topography. 12th European Conference on Earthquake Engineering. Paper no. 844. [5] Tertulliani, A., Arcoraci L., Berardi M., Bernardini F., Camassi R., Castellano C., Del Mese S., Ercolani E., Graziani L., Leschiutta I., Rossi A., Vecchi M. (2011). An application of EMS98 in a medium-sized city: The case of L’Aquila (Central Italy) after the April 6, 2009 Mw 6.3 earthquake, Bull. Earthq. Eng., 9, 67–80, doi 10.1007/s10518-010-9188-4. [6] Galli P., Molin D. (2004) Macroseismic Survey of the 2002 Molise, Italy, Earthquake and Historical Seismicity of San Giuliano di Puglia. Earthquake Spactra, 20:S1, 39-52. [7] Gizzi F.T., Potenza M.R., Zotta C. (2012). “3 November 1980 Irpinia-Basilicata earthquake (Southern Italy): towards a full knowledge of the seismic effects. Bull Earthquake Eng., 10, 1109-1131. [8] Griffiths, D.W., Bollinger G.A. (1979). The effect of Appalachian Mountain topography on seismic waves, Bull. Seism. Soc. Am., 69, 1081–1105. [9] Kawase, H., Aki K. (1990). Topography effect at the critical SV-wave incidence: Possible explanation of damage pattern by the Whittier Narrows, California, earthquake of 1 October 1987, Bull. Seism. Soc. Am., 80, 1–22. [10] Marsan P., Milana G., Pugliese A., Sanò T. (2000). Local amplification effects recorded by a local strong motion network during the 1997 Umbria-Marche earthquake. Proc. 12th World Conference on Earthquake Engineering, paper n. 1046, Auckland, New Zealand. [11] Marra, F., Azzara R., Bellucci F., Caserta A., Cultrera G., Mele B., Palombo B., Rovelli A., Boschi E. (2000). Large amplification of ground motion at rock sites within a fault zone in Nocera Umbra (central Italy), J. Seismol., 4, 543–554. [12] Cara F., Rovelli A., Di Giulio G., Marra F., Braun T., Cultrera G., Azzaro R., Boschi E. (2005). The role of site effects on the intensity anomaly of San Giuliano di Puglia inferred from aftershocks of the Molise, Central Southern Italy, sequence, November 2002, Bull. Seism. Soc. Am., 95, 1457–1468. [13] Massa, M., Lovati, S., D’Alema, E., Ferretti, G. and Bakavoli, M. (2010). An experimental approach for estimating seismic amplification effects at the top of a ridge, and the implication for ground-motion predictions: the case of Narni. Central Italy. Bull. Seism. Soc. Am., 100:6, 286-301. [14] Buech, F., Davies T.R., Pettinga J.R. (2010). The Little Red Hill Seismic Experimental Study: Topographic Effects on Ground Motion at a Bedrock-Dominated Mountain Edifice, Bull. Seism. Soc. Am., 100, 2219-2229, doi: 10.1785/0120090345. [15] Marzorati S., Ladina C., Falcucci E., Gori S., Saroli M., Ameri G., Galadini F. (2011). Site effects on the rock: the case of Castelvecchio Subequo (L’Aquila, central Italy), Bull. Earthquake Eng., 9, 841–868, doi: 10.1007/s10518-011-9263-5. [16] Paolucci R., Faccioli E., Maggio F. (1999). 3D Response analysis of an instrumented hill at Matsuzaki, Japan, by a spectral method, J.Seismol., 3, 191-209, [17] Gazetas, G., Kallou P.V., Psarropoulos P.N. (2002). Topography and soil effects in the Ms 5.9 Parnitha (Athens) earthquake: The case of Adámes, Natural Hazards, 27, 133–169. [18] Assimaki D., Gazetas G., Kausel E. (2005). Effects of local soil conditions and topographic aggravation of seismic motion: Parametric investigation and recorded field evidence from the 1999 Athens earthquake. Bull. Seism. Soc. Am., 95, 1059-1089. [19] Scandella L., Davì M., Paolucci R., Pessina V. (2008) Numerical simulation and Gis mapping of seismic amplification due to topographic effects. Proc. 31st European Seismological Commission (ESC), Crete, Greece. [20] Rovelli A. (Eds) (2012). Review of recent data on surface topography effects, Deliverable D11.2 NERA project 7th Framework Programme, EC project number: 262330, pp101. [21] CEN (2004). Eurocode 8: Design of structures for earthquake resistance - Part 1 General rules, seismic actions and rules for buildings, Brussels. [22] NTC08 (2008). Nuove Norme Tecniche per le Costruzioni, DM 14/01/2008, Gazzetta Ufficiale n.29, Suppl. n. 30 (in Italian). [23] Gallipoli M.R., Bianca M., Mucciarelli M., Parolai S, Picozzi M. (2013) Topographic versus stratigraphic amplification: mismatch between code provisions and observations during the L’Aquila (Italy, 2009) sequence. Bull. Earthquake Eng. doi 10.1007/s10518-013-9446-3 [24] Hough, S. E., Altidor J.R., Anglade D., Given D., Janvier M.G., Maharrey J.Z., Meremonte M., Mildor B.S.L., Prépetit C., Yong A. (2010). Localized damage caused by topographic amplification during the 2010 M 7.0 Haiti earthquake, Nature Geoscience, 3, 778–782. [25] Meslem A., Yamazaki F., Maruyama Y., D’Ayala D., Naili M., Benouar D., (2012) Effect of Topographic Reliefs on Building Damage Distribution in Boumerdes City during the 2003 Algeria Earthquake, Proc.15th World Conference on Earthquake Engineering, Lisbon. [26] Çelebi, M. (1987). Topographical and geological amplifications determined from strong motion and aftershock records of the 3 March 1985 Chile earthquake, Bull. Seism. Soc. Am., 77, 1147–1167. [27] Boore, D. M. (1972). A note on the effect of simple topography on seismic SH waves, Bull. Seism. Soc. Am., 62, 275-284. [28] Duque A., Hack R., Montoya L., Scarpas T., Slob S., Soeters R., van Westen C. (2001) Rapid Inventory of Earthquake Damage (RIED). Ingeokring Newsletter. publ. Assoc of Engineering Geologists of The Netherlands. no 9 [29] Cowan H.A. (1991): The North Canterbury earthquake of September 1, 1888, Journal of the Royal Society of New Zealand, 21:1, 1-12. [30] Pacor F, Paolucci R, Luzi L, Sabetta F, Spinelli A, Gorini A, Nicoletti M, Marcucci S, Filippi L, Dolce M (2011) Overview of the Italian strong motion database ITACA 1.0. Bull Earthquake Eng., 9, 1723-1739 doi:10.1007/s10518-011-9327-6. [31] The Swiss Digital Network (SDSNet) <http://www.seismo.ethz.ch/research/groups/ alrt/nat_net/sdsnet> (last access Sept. 2013) [32] Bindi D., Luzi L., Pacor F., Paolucci R. (2011). Identification of accelerometric stations in ITACA with distinctive features in their seismic response, Bull Earthquake Eng., 9, 1921–1939, doi:10.1007/s10518-011-9271-5. [33] Chang Y.C., Song G.S., Hsu S.K. (1998). Automatic extraction of ridge and valley axes using the profile recognition and polygon –breaking algorithm. Computers & Geosciences, 24:1, 83-93. [34] Chang Y.C., Sinha G. (2007). A visual basic program for ridge axis picking on DEM data using the profile-recognition and polygon-breaking algorithm. Computers & Geosciences, 33, 229–237. [35] Székely B., Karátson D. (2004). DEM-based morphometry as a tool for reconstructing primary volcanic landforms: examples from the Börzsöny Mountains, Hungary Geomorphology, 63, 25–37. [36] Gerçek D., Toprak V., Strobl J. (2011): Object-based classification of landforms based on their local geometry and geomorphometric context, International Journal of Geographical Information Science, 25:6, 1011-1023. [37] Ruhoff A.L., Reis Castro N.M., Risso A. (2011) Numerical modelling of the Topographic Wetness Index: an analysis at different scales. International Journal of Geosciences, 2, 467-483. [38] Yong B., Zhang W., Niu G., Ren L., Qin C. (2009) Spatial statistical properties and scale transform analyses on the topographic index derived from DEMs in China. Computers & Geosciences, 35, 592–602. [39] Wang C., Yang Q., Guo W., Liu H., Jupp D., Li R., Zhang H. (2012) Influence of resolution on slope in areas with different topographic characteristics. Computers & Geosciences, 41, 156–168. [40] Tarboton, D. G. and D. P. Ames, (2001),"Advances in the mapping of flow networks from digital elevation data," in World Water and Environmental Resources Congress, Orlando, Florida, May 20-24, ASCE [41] Wilson, J. P. and J. C. Gallant, (2000), Terrain Analysis: Principles and Applications, John Wiley and Sons, New York, 479 p. [42] Pessina V., Fiorini E., Paolucci R. (2010). GIS-Based Identification of Topographic Sitesin Italy with Significant Ground Motion Amplification Effects. 5th Intern. Conf. on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics, San Diego. [43] Weiss A. (2001) Topographic position and landform analysis. Poster presentation, ESRI Users Conference, San Diego, CA. [44] Jennes J. (2006) Topographic Position Index (tpi_jen.avx) extension for ArcView 3.x, Jenness enterprise <http://www.jennessent.com> (last access 2012) [45] PEER Strong Motion Database <http://peer.berkeley.edu/smcat/> (last access Sept. 2013) [46] COSMOS Consortium of Organizations for Strong motion Observation systems <http://www.cosmos-eq.org/> (last access Sept. 2013) [47] Center for Engineering Strong-Motion Data <www.strongmotioncenter.org> (last access Sept. 2013) [48] KNEt-NIED Strong-motion Seismograph Networks (K-NET, Kik-net of National Research Institute for Earth Science and Disaster Prevention <www.kyoshin.bosai.go.jp> (last access Sept. 2013) [49] ITACA ITalian ACcelerometric Archive <http://itaca.mi.ingv.it> (last access Sept. 2013) [50] ASTER GDEM V2 (2011). Advanced Spaceborne Thermal Emission and Reflection Radiometer Global Digital Elevation Model Version 2, http://asterweb.jpl.nasa.gov/gdem.asp (last access August 2012) [51] Di Capua G., Lanzo G., Pessina V., Peppoloni S., Scasserra G. (2011) The recording stationsof the Italian strong motion network: geological information and site classification. Bull. Earthquake Eng., 6:9, 1779-1796, doi: 10.1007/s10518-011-9326-7.en
dc.description.obiettivoSpecifico3T. Pericolosità sismica e contributo alla definizione del rischioen
dc.description.journalTypeJCR Journalen
dc.description.fulltextrestricteden
dc.relation.issn0267-7261en
dc.relation.eissn1879-341Xen
dc.contributor.authorPessina, V.en
dc.contributor.authorFiorini, E.en
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Milano, Milano, Italiaen
dc.contributor.departmentEucentre Paviaen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Milano, Milano, Italia-
crisitem.author.orcid0000-0002-3772-7030-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
2014_pessina_SDEE_topogis.pdfmain article7.52 MBAdobe PDF
Show simple item record

WEB OF SCIENCETM
Citations

7
checked on Feb 10, 2021

Page view(s) 20

407
checked on Apr 24, 2024

Download(s) 50

69
checked on Apr 24, 2024

Google ScholarTM

Check

Altmetric