Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/8980
DC FieldValueLanguage
dc.contributor.authorallPiscini, A.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione CNT, Roma, Italiaen
dc.contributor.authorallLombardo, V.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione CNT, Roma, Italiaen
dc.date.accessioned2014-04-14T08:31:07Zen
dc.date.available2014-04-14T08:31:07Zen
dc.date.issued2014-01-16en
dc.identifier.urihttp://hdl.handle.net/2122/8980en
dc.description.abstractThis paper describes an application of artificial neural networks for the recognition of volcanic lava flow hot spots using remote sensing data. Satellite remote sensing is a very effective and safe way to monitor volcanic eruptions in order to safeguard the environment and the people affected by such natural hazards. Neural networks are an effective and well-established technique for the classification of satellite images. In addition, once well trained, they prove to be very fast in the application stage. In our study a back propagation neural network was used for the recognition of thermal anomalies affecting hot lava pixels. The network was trained using the three thermal channels of the Advanced Very High Resolution Radiometer (AVHRR) sensor as inputs and the corre- sponding values of heat flux, estimated using a two thermal component model, as reference outputs. As a case study the volcano Etna (Eastern Sicily, Italy) was chosen, and in particular the effusive eruption which took place during the month of 2006 July. The neural network was trained with a time-series of 15 images (12 nighttime images and 3 daytime images) and validated on three independent data sets of AVHRR images of the same eruption and on two relative to an eruption occurred the following month. While for both nighttime and daytime validation images the neural network identified the image pixels affected by hot lava with a 100 per cent success rate, for the daytime images also adjacent pixels were included, apparently not interested by lava flow. Despite these performance differences under different illumination conditions, the proposed method can be considered effective both in terms of classification accuracy and generalization capability. In particular our approach proved to be robust in the rejection of false positives, often corresponding to noisy or cloudy pixels, whose presence in multispectral images can often undermine the performance of traditional classification algorithms. Future work shall address application of the proposed method to data acquired with a high temporal resolution, such as those provided by the spinning enhanced visible and infrared imager sensor on board the Meteosat second generation geostationary satellite.en
dc.language.isoEnglishen
dc.publisher.nameWiley-Blackwellen
dc.relation.ispartofGeophysical Journal Internationalen
dc.relation.ispartofseries/196(2014)en
dc.subjectImage processingen
dc.subjectNeural networksen
dc.subjectfuzzy logicen
dc.subjectRemote sensing of volcanoesen
dc.subjectHot-spot detectionen
dc.subjectMt. Etnaen
dc.titleVolcanic hot spot detection from optical multispectral remote sensing data using artificial neural networksen
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber1525-1535en
dc.subject.INGV04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoringen
dc.identifier.doi10.1093/gji/ggt506en
dc.relation.referencesAl-rawi, K.R., Casanova, J.L. & Calle, A., 2001. Burned area mapping system and fire detection system, based on neural networks and NOAA- AVHRR imagery,Int. J. Remote Sens., 22, 2015–2032. Ardo, J., Pilesjo, P. & Skidmore, A., 1997. Neural networks, multitemporal Landsat Thematic Mapper data and topographic data to classify forest damages in the Czech Republic, Can. J. Remote Sens., 23, 217–229. Augusteijn, M.F. & Warrender, C.E., 1998. Wetland classification using optical and radar data and neural network classification, Int. J. Remote Sens., 19, 1545–1560. AVHRR (Advanced Very High Resolution Radiometer), 2012. NOAA Satellite and Information Service. Available at: http://noaasis.noaa.gov/ NOAASIS/ml/avhrr.html (last accessed 4 December 2012). Barberi, F., Rosi, M. & Sodi, A., 1993. Volcanic hazard assessment at Stromboli based on review of historical data, Acta Vulcano., 3, 173–187. Basheer, I., 2000. Selection of methodology for modeling hysteresis be- havior of soils using neural networks, J. Comput.-Aided Civil Infrastruct. Eng. 5(6), 445–463. Donegan, S. & Flynn, L.P., 2004. Comparison of the response of the Landsat 7 enhanced thematic mapper plus and the earth observing-1 advanced land imager over active lava flows, J. Volc. Geotherm. Res.,135(1–2), 105–126. Dozier, J., 1981. A method for satellite identification of surface temper- ature fields of subpixel resolution, Remote Sens. Environ., 11, 221– 229. Dreyer, P., 1993. Classification of land cover using optimized neural nets on SPOT data, Photogramm. Eng. and Rem. S., 59, 617–621. Duda, R.O. & Hart, P.E., 1973. Pattern Classification and Scene Analysis, John Wiley and Sons. Fukunaga, K., 1990. Introduction to Statistical Pattern Recognition, 2nd edn, Academic Press. Foody, G.M., 1995a. Land cover classification by an artificial neural network with ancillary information,Int. J. Geogr. Inf. Syst., 1, 527–542. Foody, G.M., 1995b. Using prior knowledge in artificial neural network classification with a minimal training set, Int. J. Remote Sens., 16, 301– 312. 1534 A. Piscini and V. Lombardo Ganci, G., Vicari, A., Fortuna, L. & Del Negro, C., 2011. The HOTSAT vol- cano monitoring system based on combined use of SEVIRI and MODIS multispectral data, Ann. Geophys., 54(5), doi:10.4401/ag-5338. Geman, S., Bienenstock, E. & Doursat, R., 1992. Neural networks and the bias variance dilemma, Neural Comput., 4(1), 1–58. Hand, D.J., 1981. Discrimination and Classification,John Wiley and Sons. Harris, A.J.L., Swabey, S.E.J. & Higgins, J., 1995. Automated thresholding of active lavas using AVHRR data, Int. J. Remote Sens., 16(18), 3681– 3686. Harris, A.J.L., Butterworth, A.L., Carlton, R.W., Downey, I., Miller, P., Navarro, P. & Rothery, D.A., 1997a. Low cost volcano surveillance from space: case studies from Etna, Krafla, Cerro Negro, Fogo, Lascar and Erebus, B. Volcanol., 59, 49–64. Harris, A.J.L., Blake, S., Rothery, D.A. & Stevens, N.F., 1997b. A chronol- ogy of the 1991 to 1993 Mount Etna eruption using advanced very high resolution radiometer data: implications for real-time thermal volcano monitoring, J. geophys. Res., 102, 7985–8003. Harris, A.J.L., Flynn, L.P., Keszthelyi, L., Mouginis-Mark, P.J., Rowland, S.K. & Resing, J.A., 1998. Calculation of lava effusion rates from Landsat TM data, B, Vucanol., 60, 52–71. Harris, A.J.L., Flynn, L.P., Rothery, D.A., Oppenheimer, C. & Sherman, S.B., 1999. Mass flux measurements at active lava lakes: implications for magma recycling, J. geophys. Res., 104(B4), 7117–7136. Harris, A.J.L., Murray, J.B., Aries, S.E., Davies, M.A., Flynn, L.P., Wooster, M.J., Wright, R. & Rothery, D.A., 2000a. Effusion rate trends at Etna and Krafta and their implications for eruptive mechanisms, J. Vulcanol. Geotherm. Res., 102, 237–269. Harris, A.J.L. et al., 2000b. Real-time Monitoring of Volcanic Hot Spots with Satellites, Am. geophys. Un. Monogr. Series, 116, 139–159. Harris, A.J.L., Pilger, E., Flynn, L.P., Garbeil, H., Mouginis-Mark, P.J., Kauahikaua, J. & Thornber, C., 2001. Automated, high temporal resolu- tion, thermal analysis of Kilauea volcano, Hawaii, using GOES satellite data, Int. J. Remote Sens., 22(6), 945–967. Harris, A.J.L., Pilger, E. & Flynn, L.P., 2002. Web-based hot spot monitoring using GOES: what it is and how it works, Adv. Environ. Monitor. Model., 1(3), 5–36. Harris, A.J.L., Carniel, R. & Jones, J., 2005. Identification of variable con- vective regimes at Erta Ale lava lake, J. Volc. Geotherm. Res., 142, 207– 223. Hassoun, M.H., 1995. Fundamentals of Artificial Neural Networks, MIT Press. Haykin, S., 1999.Neural Networks. A Comprehensive Foundation, Prentice Hall. Hecht-Nielsen, R., 1990.Neurocomputing, Addison-Wesley. Hewitson, B.C. & Crane, R.G., 1994. Looks and uses, in Neural Nets: Applications in Geography, pp. 1–9, eds Hewitson, B.C. & Crane, R.G., Kluwer. Jadid, M.N. & Fairbairn, D.R., 1996. Predicting moment-curvature param- eters from experimental data, Eng. Appl. Artif. Intell., 9(3), 309–319. Kaminsky, E.J., Barad, H. & Brown, W., 1997. Textural neural network and version space classifiers for remote sensing,Int. J. Remote Sens., 18, 741–762. Keramitsoglou, I., Sarimveis, H., Kiranoudis, C.T. & Sifakis, N., 2005. Radial basis function neural networks classification using very high spatial resolution satellite imagery: an application to the habitat area of Lake Kerkini (Greece), Int. J. Remote Sens., 26, 1861–1880. Keszthelyi, L., Harris, A.J.L. & Dehn, J., 2003. Observations of the effect of wind on the cooling of active lava flows, Geophys. Res. Lett., 30, doi: 10.1029/2003GL017994. . Kontoes, C.C., Raptis, V., Lautner, M. & Oberstadler, R., 2000. The potential of kernel classification techniques for land use mapping in urban areas using 5m-spatial resolution IRS-1C imagery, Int. J. Remote Sens., 21, 3145–3151. Kurnaz, M.N., Dokur, Z. & Olmez, T., 2005. Segmentation of remote- sensing images by incremental neural network,Pattern Recogn. Lett., 26, 1096–1104. Lek, S. & Guegan, J.F., 1999. Artificial neural networks as a tool in ecological modelling, an introduction, Ecol. Model., 120, 65–73. Li, Z., Khananian, A., Fraser, R.H. & Cihlar, J., 2001. Automatic detection of fire smoke using artificial neural networks and threshold approaches applied to AVHRR imagery, IEEE T. Geosci. Remote Sens., 39, 1859– 1870. Lipman, P.W. & Banks, N.G., 1987. Aa flow dynamics, Mauna Loa 1984. U.S.G.S, professional Paper 1350, 1527–1567. Lloyd, C.D., Berberoglu, S., Curran, P.J. & Atkinson, P.M., 2004. A compar- ison of texture measures for the per-field classification of Mediterranean land cover, Int. J. Remote Sens., 25, 3943–3965. Lombardo, V. & Buongiorno, M.F., 2006. Lava flow thermal analysis using three infrared bands of remote sensing imagery: a study case from Mt.Etna 2001 eruption, Remote Sens. Environ., 101(2), 141–149. Lombardo, V., Buongiorno, M.F., Merucci, L. & Pieri, D.C., 2004. Differ- ences in Landsat TM derived lava flow thermal structure during summit and flank eruption at Mount Etna, J. Volc. Geotherm. Res., 134(1–2), 15–34. Lombardo, V., Buongiorno, M.F. & Amici, S., 2006. Characterization of vol- canic thermal anomalies by means of sub-pixel temperature distribution analysis, B. Volcanol., 68(07–08), 641–651. Lombardo, V., Harris, A.J.L., Calvari, S. & Buongiorno, M.F., 2009. Spatial variations in lava flow field thermal structure and effusion rate derived from very high spatial resolution hyperspectral (MIVIS) data, J. geophys. Res., 114,B02208, doi:10.1029/2008JB005648. Lombardo, V., Silvestri, M. & Spinetti, C., 2011. Near real time routine for volcano monitoring using infrared satellite data, Ann. Geophys., 54(5), doi:10.4401/ag-5336. Marchese, F., Filizzola, C., Genzano, N., Mazzeo, G., Pergola, N. & Tramutoli, V., 2011. Assessment and improvement of a robust satellite technique (RST) for thermal monitoring of volcanoes, Remote Sens. En- viron., 115(6), 1556–1563. Mas, J.F., 2004. Mapping land use/cover in a tropical coastal area using satellite sensor data, GIS and artificial neural networks. Estuarine,Coastal Shelf Sci., 59, 219–230. Masters, T., 1994. Practical Neural Network Recipes in C++, Academic Press. Murai, H. & Omatu, S., 1997. Remote sensing image analysis using a neural network and knowledge-based processing, Int. J. Remote Sens., 18, 811– 828. Oppenheimer, C., 1991. Lava flow cooling estimated from Landsat Thematic Mapper infrared data: the Lonquimay eruption (Chile, 1989), J. geophys. Res., 96, 21 865–21 878. Oppenheimer, C., 1993. Thermal distributions of hot volcanic surfaces con- strained using three infrared bands of remote sensing data, Geophys. Res. Lett., 20(6), 431–434. Oppenheimer, C., Rothery, D.A. & Francis, P.W., 1993a. Thermal distribu- tion at fumarole fields: implications for infrared remote sensing of active volcanoes, J. Volc. Geotherm. Res., 55, 97–115. Oppenheimer, C., Francis, P.W., Rothery, D.A., Carlton, R.W.T. & Glaze, L., 1993b. Infrared image analysis of volcanic thermal features: Lascar ` Volcano, Chile, 1984–1992, J. geophys. Res., 98, 4269–4286. Paola, J.D. & Schowengerdt, R.A., 1995. A detailed comparison of back- propagation neural network and maximum-likelihood classifiers for ur- ban land use classification, IEEE T. Geosci. Remote Sens., 33, 981– 996. Patrick, M., Dehn, J. & Dean, K., 2005. Numerical modeling of lava flow cooling applied to the 1997 Okmok eruption, II: compari- son with AVHRR thermal imagery, J. geophys. Res., 110, B02210, doi:10.1029/2003JB002538. Pergola, N., Marchese, F. & Tramutoli, V., 2004. Automated detection of ther- mal features of active volcanoes by means of Infrared AVHRR records, Remote Sens. Environ., 93(3), 311–327. Pieri, D.C. & Baloga, S., 1986. Eruption rate, area and length relationships for some Hawaiian lava flows, J. Volcanol. Geotherm. Res., 30, 29–45. Pieri, D.C., Glaze, L.S. & Abrams, M.J., 1990. Thermal radiance observation of an active lava flow during th June 1984 eruption of Mt. Etna, Geology, 18, 1018–1022. Prechelt, L., 1998. Automatic early stopping using cross validation: quanti- fying the criteria, Neural Net., 11(4), 761–767. Volcanic hot spot detection 1535 Qiu, F. & Jensen, J.R., 2004. Opening the black box of neural networks for remote sensing image classification,Int. J. Remote Sens., 25, 1749–1768. Ripley, B.D., 1994. Neural networks and related methods for classification, J. Roy. Stat. Soc. B, 56(3), 409–456. Rosenblatt, R., 1962. Principles of Neurodynamics, Spartan Books. Rothery, D.A., Francis, P.W. & Wood, C.A., 1988. Volcano monitoring using short wavelength infrared data from satellites, J. geophys. Res., 93, 7993– 8008. Rumelhart, D.E., Hinton, G.E. & Williams, R.J., 1986. Learning internal representations by error propagation, in Parallel Distributed Process- ing: Explorations in the Microstructures of Cognition, pp. 318–362, eds Rumelhart, D.E. & McClelland, J.L., MIT Press. Rumelhart, D.E., Durbin, R., Golden, R. & Chauvin, Y., 1995. Backprop- agation: the basic theory, in Backpropagation: Theory, Architecture, and Applications, pp. 1–34, eds Rumelhart, D.E. & Yves, C., Lawrence Erlbaum. Schalkoff, R., 1992. Pattern Recognition: Statistical, Structural and Neural Approaches, Wiley. Schalkoff, R.J., 1997. Artificial Neural Networks, McGraw-Hill. Smithsonian Institution, Global Volcanism Program Digital Information Se- ries, GVP-3, 2013. Available at: http://www.volcano.si.edu (last accessed 24 January 2013). Spangenberg, D.A., Doelling, D.R., Chakrapani, V., Minnis, P. & Uttal, T., 2002. Nighttime cloud detection over the Arctic using AVHRR data, in Proceedings of 12th ARM Science Team Meeting, St. Petersburg, FL, April 8–12. Steffke, A.M. & Harris, A.J.L., 2011. A review of algorithms for detecting volcanic hot spots in satellite infrared data, B. Volcanol., 73, 1109–1137. Sunar, F. & Ozkan, C., 2001. Forest fire analysis with remote sensing data, Int. J. Remote Sens., 22, 2265–2277. Tatem, A.J., Noor, A.M. & Hay, S.I., 2004. Defining approaches to set- tlement mapping for public health management in Kenya using medium spatial resolution satellite imagery, Remote Sens. Environ., 93, 42–52. Wadge, G., 1977. The storage and release of magma on Mount Etna, J. Volc. Geotherm. Res., 2, 361–384. Walker, G.P.L., 1973. Lengths of lava flows, Philos. Trans. R. Soc. London, A274, 107–118. Wan, Z. & Dozier, J., 1989. Land-surface temperature measurement from space: physical principles and inverse modelling, IEEE Trans. Geosci. Remote Sens., 27(3), 268–277. Webley, P.W. et al., 2008. Experiences from near-real-time satellite based volcano monitoring in central America: case studies at Fuego, Guatemala, Int. J. Remote Sens., 29, 6621–6646. Wooster, M.J. & Rothery, D.A., 1997. Time series analysis of effusive vol- canic activity using the ERS along track scanning radiometer: the 1995 eruption of Fernandina volcano, Galapagos Island,Remote Sens. Environ., 69, 109–117. Wright, R., Rothery, D.A., Blake, S. & Pieri, D.C., 2000. Improved remote sensing estimates of lava flow cooling: a case study of the 1991 to 1993 Mount Etna eruption, J. geophys. Res., 105, 23 681–23 694. Wright, R., Blake, S., Harris, A. & Rothery, D., 2001. A simple explanation for the space-based calculation of lava eruptions rates, Earth Planet. Sc. Lett., 192, 223–233. Wright, R., Flynn, L., Garbeil, H., Harris, A. & Pilger, E., 2004. MODVOLC: near-real-time thermal monitoring of global volcanism, J. Volc. Geotherm. Res., 135, 29–49.en
dc.description.obiettivoSpecifico5V. Sorveglianza vulcanica ed emergenzeen
dc.description.journalTypeJCR Journalen
dc.description.fulltextrestricteden
dc.relation.issn0956-540Xen
dc.relation.eissn1365-246Xen
dc.contributor.authorPiscini, A.en
dc.contributor.authorLombardo, V.en
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione ONT, Roma, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione ONT, Roma, Italiaen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione ONT, Roma, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione ONT, Roma, Italia-
crisitem.author.orcid0000-0001-5545-3611-
crisitem.author.orcid0000-0002-3231-9636-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
Geophys. J. Int.-2014-Piscini-1525-35.pdfMain article1.03 MBAdobe PDF
Show simple item record

WEB OF SCIENCETM
Citations

9
checked on Feb 10, 2021

Page view(s)

150
checked on Apr 20, 2024

Download(s)

13
checked on Apr 20, 2024

Google ScholarTM

Check

Altmetric