Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/8946
DC FieldValueLanguage
dc.contributor.authorallRuggio, R.; Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, Università del Salentoen
dc.contributor.authorallVichi, M.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Bologna, Bologna, Italiaen
dc.contributor.authorallPaparella, F.; Dipartimento di Matematica e Fisica E. De Giorgi, Universitá del Salentoen
dc.contributor.authorallMasina, S.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Bologna, Bologna, Italiaen
dc.date.accessioned2014-02-27T07:28:59Zen
dc.date.available2014-02-27T07:28:59Zen
dc.date.issued2013-07en
dc.identifier.urihttp://hdl.handle.net/2122/8946en
dc.description.abstractThe Equatorial Undercurrent (EUC) is the major source of iron to the equatorial Pacific and it is sensitive to climatic changes as other components of the tropical Pacific. This work proposes a methodology based on a Lagrangian approach aimed at understanding the changes in the transport of iron rich waters to the EUC in a future climate change scenario, using climate model data from an Earth system model. A selected set of regions from the northern and southern extra-equatorial Pacific has been chosen. These regions are charac- terized by the presence of iron sources from continental shelf processes like the Papua New Guinea region and atmospheric deposition like the northern subtropical gyre. The trajectories that reach the EUC during the 20th and the 21st century departing from these areas have been analyzed using a set of statistics designed to determine variations in the amount of transport and in the travel times of the water masses. The transport of waters to the EUC from the north Pacific subtropical gyre and from the Bismarck Sea is projected to increase during the 21st century. The increase is particularly significant for water masses from the northern subtropical gyre, with travel times lower than 10 years in the second half of the 21st century. This increased interaction between the extra-tropics and the EUC may bring additional iron-rich waters in the high-nutrient low-chlorophyll region of the equatorial Pacific compatibly with the significant increase of the simulated net primary production found in the biogeochemical model, thus partly offsetting the anticipated decrease of production implied by the surface warmingen
dc.description.sponsorshipThis work was funded by the Centro Euro-Mediterraneo per i Cambiamenti Climatici through the GEMINA project.en
dc.language.isoEnglishen
dc.publisher.nameElsevier Science Limiteden
dc.relation.ispartofJournal of marine systemsen
dc.relation.ispartofseries/121 (2013)en
dc.subjectEquatorial circulationen
dc.subjectEquatorial Undercurrentsen
dc.subjectIronen
dc.subjectPrimary productionen
dc.subjectPacific circulationen
dc.subjectLagrangian methoden
dc.titleClimatic trends of the equatorial undercurrent: A backup mechanism for sustaining the equatorial Pacific productionen
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber11-23en
dc.subject.INGV03. Hydrosphere::03.04. Chemical and biological::03.04.01. Biogeochemical cyclesen
dc.identifier.doi10.1016/j.jmarsys.2013.04.001en
dc.relation.referencesAchutaRao, K., Sperber, K.R., 2006. ENSO simulation in coupled ocean–atmosphere models: are the current models better? Clim. Dyn. 27 (1), 1–15. Blanke, B., Raynaud, S., 1997. Kinematics of the Pacific Equatorial Undercurrent: An Eulerian and Lagrangian approach from GCM results. J. Phys. Oceanogr. 27 (6), 1038–1053. Butt, J., Lindstrom, E., 1994. Currents off the east coast of New Ireland, Papua New Guinea, and their relevance to the regional undercurrents in the western equatorialPacic Ocean. J. Geophys. Res. 99 (12), 12503-12514. Capotondi, A., Alexander, M.A., Deser, C., McPhaden, M.J., 2005. Anatomy and decadal evolution of the Pacific subtropical–tropical cells (STCs). J. Clim. 18 (18), 3739–3758. Christian, J.R., Verschell, M.A., Murtugudde, R., Busalacchi, A.J., McClain, C.R., 2002. Biogeochemical modelling of the tropical Pacific Ocean. II: iron biogeochemistry. Deep-Sea Res. Part II 49, 545–565. Coale, K.H., Fitzwater, S.E., Gordon, R.M., Johnson, K.S., Barber, R.T., 1996. Control of community growth and export production by upwelled iron in the equatorial Pacific ocean. Nature 379, 621–624. DiNezio, P.N., Clement, A.C., Vecchi, G.A., Soden, B.J., Kirtman, B.P., Lee, S.-K., 2009. Climate response of the equatorial Pacific to global warming. J. Clim. 22 (18), 4873–4892. DiNezio, P., Clement, A., Vecchi, G., 2010. Reconciling differing views of tropical pacific climate change. EOS Trans. Am. Geophys. Union 91 (16) (URL http://dx.doi.org/10. 1029/2010EO160001). Fine, R., Lukas, R., Bingham, F.M., Warner, M.J., Gammon, R., 1994. The western equato- rial Pacific: A water mass crossroads. J. Geophys. Res. 99 (25), 20063–20080. Fogli, P.G., Manzini, E., Vichi, M., Alessandri, A., L.P., Gualdi, S., Scoccimarro, E., Masina, S., Navarra, A., 2009. INGV-CMCC carbon: A carbon cycle Earth system model. Tech. Rep. RP0061. CMCC. Ganachaud, A.A., Sen Gupta, J.N., Brown, K., Evans, K., Maes, C., Muir, L.C., Graham, S., 2013. Projected changes in the tropical Pacific Ocean of importance to tuna fisher- ies. Clim. Chang. http://dx.doi.org/10.1007/s10584-012-0631-1 (in press). Goodman, P.J., Hazeleger, W., de Vries, P., Cane, M., 2005. Pathways into the Pacific Equa torial Undercurrent: A trajectory analysis*. J. Phys. Oceanogr. 35 (11), 2134–2151 (2011/01/29). Grenier, M., Cravatte, S., Blanke, B., Menkes, C., Koch-Larrouy, A., Durand, F., Melet, A., Jeandel, C., 2011. From the western boundary currents to the Pacific Equatorial Undercurrent: modeled pathways and water mass evolutions. J. Geophys. Res. 116 (C12044), 2011. Gu, D., Philander, S., 1997. Interdecadal climate fluctuations that depend on exchanges between the tropics and extratropics. Science 275 (5301), 805. Hayes, S.P., Mangum, L.J., Picaut, J., Sumi, A., Takeuchi, K., 1991. TOGA-TAO: A moored array for real-time measurements in the tropical Pacific Ocean. Bull. Am. Meteorol. Soc. 72, 339–347. http://dx.doi.org/10.1175/1520-0477(1991)072b0339:TTAMAF>2.0.CO;2. Hockney, R.W., Eastwood, J.W., 1988. Computer Simulations Using Particles. Taylor & Francis, New York. Huang, B.Y., Liu, Z.Y., 1999. Pacific subtropical–tropical thermocline water exchange in the National Centers for Enviromental Prediction ocean model. J. Geophys. Res. Oceans 104 (12), 3470–3487. Jickells, T.D., An, Z.S., Andersen, K.K., Baker, A.R., Bergametti, G., Brooks, N., Cao, J.J., Boyd, P.W., Duce, R.A., Hunter, K.A., Kawahata, H., Kubilay, N., laRoche, J., Liss, P.S., Mahowald, N., Prospero, J.M., Ridgwell, A.J., Tegen, I., Torres, R., 2005. Global iron connections between desert dust, ocean biogeochemistry, and climate. Science 308 (5718), 67–71. http://dx.doi.org/10.1126/science.1105959. Johnson, G.C., Sloyan, B.M., Kessler, W.S., MCTaggart, K.E., 2002. Direct measurements of the upper ocean currents and water properties across the tropical Pacific during 1990s. Prog. Oceanogr. 52, 31–61. Karnauskas, K.B., Cohen, A.L., 2012. Equatorial refuge amid tropical warming. Nat. Clim. Chang. 2 (7), 530–534. http://dx.doi.org/10.1038/nclimate1499. Kessler, W., 2006. The circulation of the eastern tropical Pacific: A review. Prog. Oceanogr. 69 (2–4), 181–217. Lowe, J.A., Hewitt, C.D., van Vuuren, D.P., Johns, T.C., Stehfest, E., Royer, J.F., van der Linden, P.J., 2009. New study for climate modeling, analyses, and scenarios. EOS Trans. Am. Geophys. Union 90 (21). http://dx.doi.org/10.1029/2009EO210001. Lukas, R., Firing, E., 1984. The geostrophic balance of the Pacific Equatorial Undercurrent. Deep-Sea Res. 31, 61–66. Mackey, D.J., O'sullivan, J.E., Watson, R.J., 2002. Iron in the western Pacific: A riverine or hydrothermal source for iron in the equatorial undercurrent? Deep-Sea Res. Part II 49, 877–893. Madec, G., Imbard, M., 1996. A global ocean mesh to overcome the North Pole singular- ity. Clim. Dyn. 12, 381–388. Madec, G., Delecluse, P., Imbard, M., Levy, C., 1999. OPA8.1 ocean general circulation model reference manual. Notes Du Pole De Modelisation. IPSL, France (February, http://www.lodyc.jussieu.fr/opa. URL http://www.lodyc.jussieu.fr/opa). McPhaden, M.J., Zhang, D., 2004. Pacific ocean circulation rebounds. Geophys. Res. Lett. 31 (18). http://dx.doi.org/10.1029/2004GL020727. Meehl, G.A., Covey, C., Delworth, T., Latif, M., McAvaney, B., Mitchell, J.F., Stouffer, R.J., Taylor, K.E., 2007. The WCRP CMIP3 multimodel dataset. Bull. Am. Meteorol. Soc. 88, 1383–1394. http://dx.doi.org/10.1175/BAMS-88-9-1383. Moore, J.K., Braucher, O., 2008. Sedimentary and mineral dust sources of dissolve iron to the world ocean. Biogeosciences 5, 631–656. Nakicenovic, N., Swart, R., 2000. Special report on emissions scenarios. A Special Report of Working Group III of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK (July). Pennington, J., Mahoney, K., Kuwahara, V., Kolber, D., Calienes, R., Chavez, F., 2006. Primary production in the eastern tropical pacific: A review. Prog. Oceanogr. 69, 285317. Rodgers, K.B., Blanke, B., Madec, G., Aumont, O., Ciais, P., Dutay, J.C., 2003. Extratropical sources of equatorial pacific upwelling in an OGCM. Geophys. Res. Lett. 30 (2). http://dx.doi.org/10.1029/2002GL016003 (01). Sarmiento, J.L., Slater, R., Barber, R., Bopp, L., Doney, S.C., Hirst, A.C., Kleypas, J., Matear, R., Mikolajewicz, U., Monfray, P., Soldatov, V., Spall, S.A., Stouffer, R., 2004. Response of ocean ecosystems to climate warming. Glob. Biogeochem. Cycles 18, 3003. Sen Gupta, A., Ganachaud, A., McGregor, S., Brown, J.N., Muir, L., 2012. Drivers of the projectedchangestothepacificoceanequatorialcirculation.Geophys.Res.Lett.en
dc.description.obiettivoSpecifico4A. Clima e Oceanien
dc.description.journalTypeJCR Journalen
dc.description.fulltextrestricteden
dc.relation.issn0924-7963en
dc.contributor.authorRuggio, R.en
dc.contributor.authorVichi, M.en
dc.contributor.authorPaparella, F.en
dc.contributor.authorMasina, S.en
dc.contributor.departmentDipartimento di Scienze e Tecnologie Biologiche ed Ambientali, Università del Salentoen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Bologna, Bologna, Italiaen
dc.contributor.departmentDipartimento di Matematica e Fisica E. De Giorgi, Universitá del Salentoen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Bologna, Bologna, Italiaen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptDipartimento di Scienze e Tecnologie Biologiche ed Ambientali, Università del Salento-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Bologna, Bologna, Italia-
crisitem.author.deptDipartimento di Matematica e Fisica E. De Giorgi, Universitá del Salento-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Bologna, Bologna, Italia-
crisitem.author.orcid0000-0001-6273-7065-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent03. Hydrosphere-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
ruggio_et_al_2013.pdfmain article2.34 MBAdobe PDF
Show simple item record

WEB OF SCIENCETM
Citations

4
checked on Feb 10, 2021

Page view(s) 10

341
checked on Apr 20, 2024

Download(s) 50

99
checked on Apr 20, 2024

Google ScholarTM

Check

Altmetric