Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/8934
DC FieldValueLanguage
dc.contributor.authorallAvallone, A.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione CNT, Roma, Italiaen
dc.contributor.authorallRovelli, A.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.authorallDi Giulio, G.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.authorallImprota, L.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.authorallBen-Zion, Y.; University of Southern Californiaen
dc.contributor.authorallMilana, G.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.authorallCara, F.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.date.accessioned2014-02-19T13:13:18Zen
dc.date.available2014-02-19T13:13:18Zen
dc.date.issued2014-01-21en
dc.identifier.urihttp://hdl.handle.net/2122/8934en
dc.description.abstractA 10 Hz sampling frequency GPS station was installed near L'Aquila a few days before the 6 April 2009 Mw 6.1 earthquake. It recorded displacement waveforms during the main shock and the largest Mw 5.4 aftershock of 7 April. The horizontal components of the main shock contain a high-amplitude (43 cm peak-to-peak) nearly harmonic (1 Hz) wave train not evident in other nearby instrumental records. The persistency of this feature during aftershocks recorded by a temporarily colocated seismological station highlights a local site effect. Traditional models based on near-surface velocity structure and topography variations fail to reproduce the size and frequency band of the observed amplified motion. The amplified wave train can be explained by a low-velocity fault zone layer below the station. This model fits the delay of the large-amplitude nearly harmonic wave train after the S wave phase and is consistent with the variation in the fault excitation efficiency between the two shocks in relation to their different source depth and location. Synthetic calculation of trapped waves in a model consisting of two quarter spaces separated by a 650 m wide low-velocity zone with 50% velocity reduction and Q value of 20 fit well the observed anomalous record. The parameters of the model fault zone layer are consistent with geological evidence of a broad damage zone adjacent to the station and a similar site response found in this crustal zone with ambient noise. Results of shallow seismic surveys and sonic logs from deep wells provide independent constraints on the host rock velocities.en
dc.description.sponsorshipThis work has partially benefited from the activities performed in the NERA project (Network of European Research infrastructures for earthquake risk Assessment and mitigation, 262330), funded by the European Commission FP7 program, and in the FIRB-Abruzzo project, funded by the Italian Ministery of Education, University and Research.en
dc.language.isoEnglishen
dc.publisher.nameAmerican Geophysical Unionen
dc.relation.ispartofJournal of geophysical research - solid earthen
dc.relation.ispartofseries1/119 (2014)en
dc.subjectHigh-rate GPSen
dc.subjectTransient deformationen
dc.subjectL'Aquila earthquakeen
dc.subjectfault-guided wavesen
dc.titleWave-guide effects in very high rate GPS record of the 6 April 2009, Mw 6.1 L'Aquila, central Italy earthquakeen
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber490–501en
dc.subject.INGV04. Solid Earth::04.06. Seismology::04.06.04. Ground motionen
dc.identifier.doi10.1002/2013JB010475en
dc.relation.referencesAnzidei, M., et al. (2009), Coseismic deformation of the destructive April 6, 2009 L’Aquila earthquake (central Italy) from GPS data, Geophys. Res. Lett., 36, L17307, doi:10.1029/2009GL039145. Atzori, S., I. Hunstad, M. Chini, S. Salvi, C. Tolomei, C. Bignami, S. Stramondo, E. Trasatti, A. Antonioli, and E. Boschi (2009), Finite fault inversion of DInSAR coseismic displacement of the 2009 L’Aquila earthquake (central Italy), Geophys. Res. Lett., 36, L15305, doi:10.1029/2009GL039293. Avallone, A., M. Marzario, A. Cirella, A. Piatanesi, A. Rovelli, C. Di Alessandro, E. D’Anastasio, N. D’Agostino, R. Giuliani, and M. Mattone (2011), Very high rate (10Hz) GPS seismology for moderate-magnitude earthquakes: The case of the Mw6.3 L’Aquila (central Italy) event, J. Geophys. Res., 116, B02305, doi:10.1029/2010JB007834. Bagnaia, R., A. D’Epifanio, S. Sylos Labini (1992), Aquila and subaequan basins: An example of Quaternary evolution in central Apennines, Italy Quat. Nova II, 187e209. Bard, P. Y., H. Cadet, B. Endrun,M. Hobiger, F. Renalier, M. Theodulidis, D. Ohrnberger, F. Fäh, F. Sabetta, and P. Teves-Costa (2010), From noninvasive site characterization to site amplification: Recent advances in the use of ambient vibration measurements, Earthquake Eng. Europe, 17(2), 105–123, doi:10.1007/978-90-481-9544-2_5. Ben-Zion, Y., and K. Aki (1990), Seismic radiation from an SH line source in a laterally heterogeneous planar fault zone, Bull. Seismol. Soc. Am., 80, 971–994. Ben-Zion, Y. (1998), Properties of seismic fault zone waves and their utility for imaging low velocity structures, J. Geophys. Res., 103, 12,567–12,585. Ben-Zion, Y., Z. Peng, D. Okaya, L. Seeber, J. G. Armbruster, N. Ozer, A. J. Michael, S. Baris, and M. Aktar (2003), A shallow fault zone structure illuminated by trapped waves in the Karadere-Duzce branch of the North Anatolian Fault, western Turkey, Geophys. J. Int., 152, 699–717. Berg, S. S., and T. Skar (2005), Controls on damage zone asymmetry of a normal fault zone: Outcrop analyses of a segment of the Moab fault, SE Utah, J. Struct. Geol., 27(10), 1803e1822. Boncio, P., G. Lavecchia, and B. Pace (2004), Defining a model of 3D seismogenic sources for Seismic Hazard Assessment applications: The case of central Apennines (Italy), J. Seismol., 8, 407–425. Boncio, P., A. Pizzi, F. Brozzetti, G. Pomposo, G. Lavecchia, D. Di Naccio, and F. Ferrarini (2010), Coseismic ground deformation of the 6 April 2009 L’Aquila earthquake (central Italy, Mw 6.3), Geophys. Res. Lett., 37, L06308, doi:10.1029/2010GL042807. Bouchon, M., and J. S. Parker (1996), Seismic response of a hill: The example of Tarzana, California, Bull. Seismol. Soc. Am., 86(1A), 66–72. Buech, F., T. R. Davies, and J. R. Pettinga (2010), The Little Red Hill seismic experimental study: Topographic effects on ground motion at a bedrock-dominated mountain edifice, Bull. Seismol. Soc. Am., 100, 2219–2229, doi:10.1785/0120090345. Burjánek, J., J. R. Moore, F. X. Yugsi Molina, and D. Fäh (2012), Instrumental evidence of normal mode rock slope vibration, Geophys. J. Int., 188, 559–569, doi:10.1111/j.1365-246X.2011.05272.x. Calderoni, G., A. Rovelli, and S. K. Singh (2013), Stress drop and source scaling of the 2009 L’Aquila earthquakes, Geophys. J. Int., 192, 260–274,doi:10.1093/gji/ggs011. Caserta, A., V. Ruggiero, and P. Lanucara (2002), Numerical modelling of dynamical interaction between seismic radiation and near surface geological structures: A parallel approach, Comput. Geosci., 28(9), 1069–1077. Çelebi, M., et al. (2010), Recorded motions of the 6 April 2009MW 6.3 L’Aquila, Italy, earthquake and implications for building structural damage: Overview, Earthquake Spectra, 26(3), 651e684, doi:10.1193/1.3450317. Cheloni, D., et al. (2010), Coseismic and initial postseimic slip of the 2009 Mw 6.3 L’Aquila earthquake, Italy, from GPS measurements, Geophys. J. Int., 181, 1539–1546, doi:10.1111/j.1365-246X.2010.04584.x. Chiarabba, C., L. Jovane, and R. Di Stefano (2005), A new view of Italian seismicity using 20 years of instrumental recordings, Tectonophysics, 395, 251–268, doi:10.1016/j.tecto.2004.09.013. Chiarabba, C., et al. (2009), The 2009 L’Aquila (central Italy) MW 6.3 earthquake: Main shock and aftershocks, Geophys. Res. Lett., 36, L18308, doi:10.1029/2009GL039627. Chiaraluce, L., L. Valoroso, D. Piccinini, R. Di Stefano, and P. De Gori (2011), The anatomy of the 2009 L’Aquila normal fault system (central Italy) imaged by high resolution foreshock and aftershock locations, J. Geophys. Res., 116, B12311, doi:10.1029/2011JB008352. Cirella, A., A. Piatanesi, M. Cocco, E. Tinti, L. Scognamiglio, A. Michelini, A. Lomax and E. Boschi (2009), Rupture history of the 2009 L’Aquila (Italy) earthquake from non-linear joint inversion of strong motion and GPS data, Geophys. Res. Lett., 36, L19304, doi:10.1029/2009GL039795. Cirella, A., A. Piatanesi, E. Tinti, M. Chini, and M. Cocco (2012), Complexity of the rupture process during the 2009 L’Aquila, Italy, earthquake, Geophys. J. Int., 190, 607–621, doi:10.1111/j.1365-246X.2012.05505.x. Civico, R., S. Pucci, D. Pantosti and P. M. De Martini (2013), Morphotectonic analysis of the long-term surface expression of the Paganica-San Demetrio Fault System (2009 L’Aquila earthquake, Central Italy), Geophys. Res. Abs., 15, EGU2013-11372-1.D’Agostino, N., S. Mantenuto, E. D’Anastasio, R. Giuliani, M. Mattone, S. Calcaterra, P. Gambino, and L. Bonci (2011), Evidence for localized active extension in the central Apennines (Italy) from Global Positioning System observations, Geology, 39, 291–294, doi:10.1130/G31796.1. D’Agostino, N., D. Cheloni, G. Fornaro, R. Giuliani, and D. Reale (2012), Space-time distribution of afterslip following the 2009 L’Aquila earthquake, J. Geophys. Res., 117, B02402, doi:10.1029/2011JB008523. Di Stefano, R., C. Chiarabba, L. Chiaraluce, M. Cocco, P. De Gori, D. Piccinini and L. Valoroso (2011), Fault zone properties affecting the rupture evolution of the 2009 (Mw 6.1) L’Aquila earthquake (central Italy): Insights from seismic tomography, Geophys. Res. Lett., 38, L10310, doi:10.1029/2011GL047365. EMERGEO Working Group (2009), Evidence for surface rupture associated with the Mw 6.3 L’Aquila earthquake sequence of April 2009 (central Italy), Terra Nova, 22, 43–51, doi:10.1111/j.1365-3121.2009.00915.x. Foglio CARG 1:50,000 (2009), Cartografia geologica ufficiale. Foglio CARG 1:50,000 N. 359, L’Aquila. Fohrmann, M., H. Igel, G. Jahnke, and Y. Ben-Zion (2004), Guided waves from sources outside faults: An indication for shallow fault zone structure?, Pure Appl. Geophys., 161, 2125–2137, doi:10.1007/s00024-004-2553-y. Galadini, F. (1999), Pleistocene change in the central Apennine fault kinematics, a key to decipher active tectonics in central Italy, Tectonics, 18, 877–894. Galli, P., F. Galadini, and D. Pantosti (2008), Twenty years of paleoseismology in Italy, Earth Sci. Rev., 88(1–2), 89–117, doi:10.1016/j. earscirev.2008.01.001. Geli, L., P.-Y. Bard, and B. Jullien (1988), The effect of topography on earthquake ground motion: A review and new results, Bull. Seismol. Soc. Am., 78, 42–63. Ghisetti, F., and L. Vezzani (1997), Interfering paths of deformation and development of arcs in the fold-and-thrust belt of the central Apennines (Italy), Tectonics, 16(3), 523–536, doi:10.1029/97TC00117. Improta, L., et al. (2012), High-resolution controlled-source seismic tomography across the Middle Aterno basin in the epicentral area of the 2009, Mw 6.3, L’Aquila earthquake (central Apennines, Italy), Italian J. Geosc., 131(3), 373–388, doi:10.3301/IJG.2011.35. Konno, K., and T. Ohmachi (1998), Ground-motion characteristics estimated from spectral ratio between horizontal and vertical components of microtremor, Bull. Seismol. Soc. Am., 88, 228–241. Lee, S.-J., Y.-C. Chan, D. Komatitsch, B.-S. Huang, and J. Tromp (2009), Effects of realistic surface topography on seismic ground motion in the Yangminshan region of Taiwan based upon the spectral-element method and LiDAR DTM, Bull. Seismol. Soc. Am., 99, 681–693, doi:10.1785/0120080264. Marzorati, S., C. Ladina, E. Falcucci, S. Gori, M. Saroli, G. Ameri, and F. Galadini (2011), Site effects “on the rock”: The case study of Castelvecchio Subequo (L’Aquila, central Italy), B. Earthquake Eng., 9, 841–868, doi:10.1007/s10518-011-9263-5. Moore, J. R., V. Gischig, J. Burjanek, S. Loew, and D. Fäh (2011), Site effects in unstable rock slopes: Dynamic behavior of the Randa instability (Switzerland), Bull. Seismol. Soc. Am., 101(6), 3110–3116, doi:10.1785/0120110127. Peng, Z., and Y. Ben-Zion (2006), Temporal changes of shallow seismic velocity around the Karadere-Duzce branch of the north Anatolian fault and strong ground motion, Pure Appl. Geophys., 163, 567–600, doi:10.1007/s00024-005-0034-6. Pischiutta, M., G. Cultrera, A. Caserta, L. Luzi, and A. Rovelli (2010), Topographic effects on the hill of Nocera Umbra, central Italy, Geophys. J. Int., 182, 977–987, doi:10.1111/j.1365-246X.2010.04654.x. Roberts, G., and A. M. Michetti (2004), Spatial and temporal variations in growth rate along active normal fault systems: An example from the Lazio Abruzzo Apennines, central Italy, J. Struct. Geol., 26, 339–376, doi:10.1016/S0191-8141(03)00103-2. Rovelli, A., F. Cara, C. Cornou, G. Di Giulio, C. Guyonnet-Benaize, G. Milana, A. Savvaidis, N. Theodulidis (2013), Network of European Research Infrastructures for Earthquake Risk Assessment and Mitigation, Deliverable D11.3, Geophysical surveys on basins and topographies: Report and findings, EC Project n. 262330, http://www.nera-eu.org/. Ruggiero, V., P. Lanucara,M. P. Busico, A. Caserta, and B. Firmani (2004), Numerical modelling of the ground motion: A parallel approach for finite elementmethods, in Proceedings of the 7th Conference on Applied and Industrial Mathematics in Italy, pp. 487–495,World Scientific, Venice, Italy. Santoni, D., C. Giuffrida, V. Ruggiero, A. Caserta, and P. Lanucara (2004), \Web user-friendly interface to produce input data for numerical simulations of seismic wave propagation problem, Geophys. Res. Abs., 6, 06,020. Scognamiglio, L., E. Tinti, A. Michelini, D. S. Dreger, A. Cirella, M. Cocco, S. Mazza, and A. Piatanesi (2010), Fast determination of moment tensors and rupture history: What has been learned from the 6 April 2009 L’Aquila earthquake sequence, Seismol. Res. Lett., 81(6), 892–906, doi:10.1785/gssrl.81.6.892. Seeber, L., J. G. Armbruster, N. Ozer, M. Aktar, S. Baris, D. Okaya, Y. Ben-Zion, and E. Field (2000), The 1999 Earthquake Sequence along the North Anatolia Transform at the Juncture between the Two Main Ruptures, in The 1999 Izmit and Duzce Earthquakes: Preliminary Results,edited by A. Barka et al., pp. 209–223, ITU Publications, Istanbul Technical Univ. Press, Istanbul, Turkey. Serpelloni, E., L. Anderlini, and M. E. Belardinelli (2012), Fault geometry, coseismic-slip distribution and Coulomb stress change associated with the 2009 April 6, Mw 6.3, L’Aquila earthquake from inversion of GPS displacements, Geophys. J. Int., 188, 473–489, doi:10.1111/j.1365- 246X.2011.05279.x. Spudich, P., M. Hellweg, and W. H. K. Lee (1996), Directional topographic site response at Tarzana observed in aftershocks of the 1994 Northridge, California, earthquake: Implications for mainshock motions, Bull. Seismol. Soc. Am., 86(1B), S193–$208. Trasatti, E., C. Kyriakopoulos, and M. Chini (2011), Finite element inversion of DInSAR data from the Mw 6.3 L’Aquila earthquake, 2009 (Italy), Geophys. Res. Lett., 38, L08306, doi:10.1029/2011GL046714. Valoroso, L., L. Chiaraluce, D. Piccinini, R. Di Stefano, D. Schaff, and F. Waldhauser (2013), Radiography of a normal fault system by 64,000 high precision earthquake locations: The 2009 L’Aquila (central Italy) case study, J. Geophys. Res. Solid Earth, 118, 1156–1176, doi:10.1002/jgrb.50130. Walters, R. J., J. R. Elliott, N. D’Agostino, P. C. England, I. Hunstad, J. A. Jackson, B. Parsons, R. J. Phillips, and G. Roberts (2009), The 2009 L’Aquila earthquake (central Italy): A source mechanism and implications for seismic hazard, Geophys. Res. Lett., 36, L17312, doi:10.1029/2009GL039337. Working Group Catalogo Parametrico dei Terremoti Italiani (CPTI) (2004), Catalogo Parametrico dei Terremoti Italiani, v. 2004 (CPTI04),320 pp., Istituto Nazionale di Geofisica e Vulcanologia, Bologna, Italy [Available at http://emidius.mi.ingv.it/CPTI/].en
dc.description.obiettivoSpecifico2T. Tettonica attivaen
dc.description.journalTypeJCR Journalen
dc.description.fulltextrestricteden
dc.relation.issn0148-0227en
dc.contributor.authorAvallone, A.en
dc.contributor.authorRovelli, A.en
dc.contributor.authorDi Giulio, G.en
dc.contributor.authorImprota, L.en
dc.contributor.authorBen-Zion, Y.en
dc.contributor.authorMilana, G.en
dc.contributor.authorCara, F.en
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione ONT, Roma, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.departmentUniversity of Southern Californiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione ONT, Roma, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma1, Roma, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma1, Roma, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione ONT, Roma, Italia-
crisitem.author.deptUniversity of Southern California-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma1, Roma, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma1, Roma, Italia-
crisitem.author.orcid0000-0002-0264-2897-
crisitem.author.orcid0000-0002-4097-7102-
crisitem.author.orcid0000-0003-0952-3978-
crisitem.author.orcid0000-0002-2775-4924-
crisitem.author.orcid0000-0002-1702-563X-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
avallone_etal_early_view.pdfMain article3.48 MBAdobe PDF
Show simple item record

WEB OF SCIENCETM
Citations 20

16
checked on Feb 10, 2021

Page view(s) 10

726
checked on Apr 13, 2024

Download(s) 50

84
checked on Apr 13, 2024

Google ScholarTM

Check

Altmetric