Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/8929
DC FieldValueLanguage
dc.contributor.authorallKahl, M.; Institut für Geologie, Mineralogie & Geophysik, Ruhr-Universität Bochum, Bochum 44780, Germanyen
dc.contributor.authorallChakraborty, S.; Institut für Geologie, Mineralogie & Geophysik, Ruhr-Universität Bochum, Bochum 44780, Germanyen
dc.contributor.authorallCosta, F.; Earth Observatory of Singapore, Nanyang Technological University, Singapore 639798, Singaporeen
dc.contributor.authorallPompilio, M.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Pisa, Pisa, Italiaen
dc.contributor.authorallLiuzzo, M.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Palermo, Palermo, Italiaen
dc.contributor.authorallViccaro, M.; Dipartimento di Scienze Biologiche, Geologiche e Ambientali— Sezione di Scienze della Terra, Università di Catania, Corso Italia 57, Catania 95129, Italyen
dc.date.accessioned2014-02-14T11:24:05Zen
dc.date.available2014-02-14T11:24:05Zen
dc.date.issued2013-01-30en
dc.identifier.urihttp://hdl.handle.net/2122/8929en
dc.description.abstractOne of the major objectives of volcanology remains relating variations in surface monitoring signals to the magmatic processes at depth that cause these variations. We present a method that enables compositional and temporal information stored in zoning of minerals (olivine in this case) to be linked to observations of real-time degassing data. The integrated record may reveal details of the dynamics of gradual evolution of a plumbing system during eruption. We illustrate our approach using the 2006 summit eruptive episodes of Mt. Etna. We find that the history tracked by olivine crystals, and hence, most likely the magma pathways within the shallow plumbing system of Mt. Etna, differed considerably between the July and October eruptions. The compositional and temporal record preserved in the olivine zoning patterns reveal two mafic recharge events within months of each other (June and September 2006), and each of these magma supplies may have triggered the initiation of different eruptive cycles (July 14–24 and August 31–December 14). Correlation of these observations with gas monitoring data shows that the systematic rise of the CO2/SO2gas values is associated with the gradual (preand syn-eruptive) supply of batches of gas-rich mafic magma into segments of Etna’s shallow plumbing system, where mixing with pre-existing and more evolved magma occurred.en
dc.description.sponsorshipThis work was funded by the German Science Foundation as part of the collaborative research centre (SFB) on Rheology of the Crust—from the upper crust to the subduction zone (SFB 526).en
dc.language.isoEnglishen
dc.publisher.nameSpringer Berlin Heidelbergen
dc.relation.ispartofBulletin of volcanologyen
dc.relation.ispartofseries/75 (2013)en
dc.subjectCrystal zoningen
dc.subjectPlumbing system Mt. Etnaen
dc.subjectMagma mixingen
dc.subjectGas monitoringen
dc.titleCompositionally zoned crystals and real-time degassing data reveal changes in magma transfer dynamics during the 2006 summit eruptive episodes of Mt. Etnaen
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber692en
dc.subject.INGV04. Solid Earth::04.04. Geology::04.04.05. Mineralogy and petrologyen
dc.subject.INGV04. Solid Earth::04.04. Geology::04.04.07. Rock geochemistryen
dc.subject.INGV04. Solid Earth::04.08. Volcanology::04.08.01. Gasesen
dc.subject.INGV04. Solid Earth::04.08. Volcanology::04.08.03. Magmasen
dc.subject.INGV04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoringen
dc.subject.INGV05. General::05.02. Data dissemination::05.02.01. Geochemical dataen
dc.subject.INGV05. General::05.02. Data dissemination::05.02.03. Volcanic eruptionsen
dc.subject.INGV05. General::05.09. Miscellaneous::05.09.99. General or miscellaneousen
dc.identifier.doi10.1007/s00445-013-0692-7en
dc.relation.referencesAiuppa A, Moretti R, Cinzia F, Giudice G, Gurrieri S, Liuzzo M, Papale P, Shinohara H, Valenza M (2007) Forecasting Etna eruptions by real-time observation of volcanic gas composition. Geology 35:1115–1118 Allard P, Behncke B, D’Amico S, Neri M, Gambino S (2006) Mount Etna 1993–2005: anatomy of an evolving eruptive cycle. Earth Sci Rev 78:85–114. doi:10.1016/j.earscirev.2006.04.002 Alparone S (2005) Rapporto sull’ attività sismica in Sicilia orientale: Settimana 13–19 Giugno 2005, INGV internal report WKRSMREP20050622. Available athttp://www.ct.ingv.it/ index.php?option=com_docman&Itemid=331&lang=it&limitstart= 180. Accessed on 26 July 2012 Alparone S (2006) Rapporto sull’ attività sismica in Sicilia orientale: Settimana 24–30 Aprile 2006, INGV internal report WKRSMREP20060512. Available athttp://www.ct.ingv.it/ index.php?option=com_docman&Itemid=331&lang=it&limitstart= 180. Accessed on 26 July 2012 Behncke B, Calvari S, Giammanco S, Neri M, Pinkerton H (2008) Pyroclastic density currents resulting from the interaction of basaltic magma with hydrothermally altered rock: an example from the 2006 summit eruptions of Mt. Etna, Italy. Bull Volcanol 70:1249–1268 Behncke B, Falsaperla S, Pecora E (2009) Complex magma dynamics at Mount Etna revealed by seismic, thermal, and volcanological data. J Geophys Res 114:B03211 Bonforte A, Bonaccorso A, Guglielmino F, Palano M, Puglisi G (2008) Feeding system and magma storage beneath Mt. Etna as revealed by recent inflation/deflation cycles. J Geophys Res 113:B05406. doi:10.1029/2007JB005334 Caltabiano T, Burton M, Giammanco S, Allard P, Bruno N, Murè F, Romano R (2004) Mt. Etna: Volcano Laboratory. In: Bonaccorso A, Calvari S, Coltelli M, Del Negro C, Falsaperla S (eds) Volcanic gas emissions from the summit craters and flanks of Mt. Etna, 1987–2000. Geophysical Monograph 143. American Geophysical Union, Washington DC, pp 111–128 Charlier BLA, Wilson CJN, Davidson JP (2008) Rapid open-system assembly of a large silicic magma body: time-resolved evidence from cored plagioclase crystals in the Oruanui eruption deposits, New Zealand. Contrib Mineral Petrol 156:799–813 Chouet BA (1996) New methods and future trends in seismological volcano monitoring. In: Scarpa R, Tilling RI (eds) Monitoring and mitigation of volcanic hazards. Springer, Berlin Collins SJ, Pyle DM, Maclennan J (2009) Melt inclusions track preeruption storage and dehydration of magmas at Etna. Geology 37:571–574 Coogan LA, Hain A, Stahl S, Chakraborty S (2005) Experimental determination of the diffusion coefficient for calcium in olivine between 900 °C and 1500 °C. Geochim Cosmochim Acta 69:3683–3694 Corsaro RA, Di Renzo V, Distefano S, Miraglia L, Civetta L (2012) Relationship between petrologic processes in the plumbing system of Mt. Etna and the dynamics of the eastern flank from 1995 to 2005. J Volcanol Geotherm Res, doi:10.1016/j.volgeores.2012.02.010 Costa F, Chakraborty S, Dohmen R (2003) Diffusion coupling between trace and major elements and a model for calculation of magma residence times using plagioclase. Geochim Cosmochim Acta 67:2189–2200 Costa F, Chakraborty S (2004) Decadal time gaps between mafic intrusion and silicic eruption obtained from chemical zoning patterns in olivine. Earth Planet Sci Lett 227:517–530 Costa F, Dohmen R, Chakraborty S (2008) Timescales of magmatic processes from modeling the zoning patterns of crystals. In: Putirka KD, Tepley III FJ (eds) Minerals, Inclusions and Volcanic Processes. RiMG 69, Mineralogical Society of America, Chantilly, VA,USA,pp545–594 Costa F, Morgan DJ (2010) Time constraints from chemical equilibration in magmatic crystals. In: Dosseto A, Turner SP, Van Orman JA (eds) Timescales of magmatic processes: from core to atmosphere. Wiley-Blackwell, West Sussex, pp. 125–159 D’Amico S (2006) Rapporto dell’ attività sismica in Sicilia orientale: Settimana 15–21 Maggio 2006, INGV internal report wkrsmrep20060524. Available athttp://www.ct.ingv.it/index.php? option=com_docman&Itemid=331&lang=it&limitstart=180. Accessed on 26 July 2012 Dohmen R, Chakraborty S (2007) Fe–Mg diffusion in olivine II: point defect chemistry, change of diffusion mechanisms and a model for calculation of diffusion coefficients in natural olivine. Phys Chem Min 34:409–430 Dzurisin D (2003) A comprehensive approach to monitoring volcano deformation as a window on the eruption cycle. Rev Geophys 41 (1):1001. doi:10.1029/2001RG000107 Edmonds M (2008) New geochemical insights into volcanic degassing. Phil Trans R Soc A 366:4559–4579 Ferlito C, Viccaro M, Nicotra E, Cristofolini R (2010) Relationship between the sector collapse of the South East Crater (Etna, Italy) and the paroxysmal event of November 16, 2006. Bull Volcanol 72:1179–1190 Ginibre C, Wörner G, Kronz A (2007) Crystal zoning as an archive for magma evolution. Elements 3:261–266 Humphreys MCS, Blundy JD, Sparks RSJ (2006) Magma evolution and open-system processes at Shiveluch volcano: insights from phenocryst zoning. J Petrol 47:2303–2334 Bull Volcanol (2013) 75:692 Page 13 of 14, 692 Kahl M (2011) Timescales of magma mixing and magma recharge—a case study from Mt. Etna (Sicily, Italy). Dissertation, RuhrUniversity Bochum, Germany Kahl M, Chakraborty S, Costa F, Pompilio M (2011) Dynamic plumbing system beneath volcanoes revealed by kinetic modeling and the connection to monitoring data: an example from Mt. Etna. Earth Planet Sci Lett 308:11–22 Loucks RR (1996) A precise olivine–augite Mg–Fe-exchange geothermometer. Contrib Mineral Petrol 125:140–150 Marchetti E, Ripepe M, Ulivieri G, Caffo S, Privitera E (2009) Infrasonic evidences for branched conduit dynamics at Mt. Etna volcano, Italy. Geophys Res Lett 36:L19308 Matthews NE, Pyle DM, Smith VC, Wilson CJN, Huber C, van Hinsberg V (2012) Quartz zoning and the pre-eruptive evolution of the similar to 340-ka Whakamaru magma systems, New Zealand. Contrib Mineral Petrol 163:87–107 Métrich N, Clocchiatti R (1996) Sulfur abundances and its speciation in oxidized alkaline melts. Geochim Cosmochim Acta 60:4151– 4160 Morgan DJ, Blake S (2006) Magmatic residence times of zoned phenocrysts: introduction and application of the binary element diffusion modeling (BDM) technique. Contrib Mineral Petrol 151:58–70 Morgan DJ, Blake S, Rogers NW, DeVivo B, Rolandi G, Macdonald R, Hawkesworth CJ (2004) Time scales of crystal residence and magma chamber volume from modeling of diffusion profiles in phenocrysts: Vesuvius 1944. Earth Planet Sci Lett 222:933–946 Neri M, Behncke B, Burton M, Galli G, Giammanco S, Pecora PE (2006) Continuous soil radon monitoring during the July 2006 Etna eruption. Geophys Res Lett 33:L24316 Nicotra E, Viccaro M (2012) Transient uprise of gas and gas-rich magma batches fed the pulsating behavior of the 2006 eruptive episodes at Mt. Etna volcano. J Volcanol Geotherm Res 227–228:102–118 Petry C, Chakraborty S, Palme H (2004) Experimental determination of Ni diffusion coefficients and their dependency on temperature, composition, oxygen fugacity and crystallographic orientation. Geochim Cosmochim Acta 68:4179–4188 Prior DJ et al (1999) The application of electron backscatter diffraction and orientation contrast imaging in the SEM to textural problems in rocks. Am Min 84:1741–1759 Ruprecht P, Cooper KM (2012) Integrating uranium-series and elemental diffusion geochronometers in mixed magmas from Volcan Quizapu, Central Chile. J Petrol 53(4):841–871 Ruprecht P, Bergantz GW, Cooper KM, Hildreth W (2012) The crustal magma storage system of Volcan Quizapu, Chile, and the effects of magma mixing on magma diversity. J Petrol 53(4):801–840 Viccaro M, Giacomoni PP, Ferlito C, Cristofolini R (2010) Dynamics of magma supply at Mt. Etna volcano (Southern Italy) as revealed by textural and compositional features of plagioclase phenocrysts. Lithos 116:77–91 Zellmer GF, Blake S, Vance D, Hakesworth C, Turner S (1999) Plagioclase residence times at two island arc volcanoes (Kameni islands, Santorini and Soufriere, St. Vincent) determined by Sr diffusion systematics. Contrib Mineral Petrol 136:345–357en
dc.description.obiettivoSpecifico2V. Dinamiche di unrest e scenari pre-eruttivien
dc.description.obiettivoSpecifico3V. Dinamiche e scenari eruttivien
dc.description.obiettivoSpecifico5V. Sorveglianza vulcanica ed emergenzeen
dc.description.journalTypeJCR Journalen
dc.description.fulltextrestricteden
dc.relation.issn0258-8900en
dc.relation.eissn1432-0819en
dc.contributor.authorKahl, M.en
dc.contributor.authorChakraborty, S.en
dc.contributor.authorCosta, F.en
dc.contributor.authorPompilio, M.en
dc.contributor.authorLiuzzo, M.en
dc.contributor.authorViccaro, M.en
dc.contributor.departmentInstitut für Geologie, Mineralogie & Geophysik, Ruhr-Universität Bochum, Bochum 44780, Germanyen
dc.contributor.departmentInstitut für Geologie, Mineralogie & Geophysik, Ruhr-Universität Bochum, Bochum 44780, Germanyen
dc.contributor.departmentEarth Observatory of Singapore, Nanyang Technological University, Singapore 639798, Singaporeen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Pisa, Pisa, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Palermo, Palermo, Italiaen
dc.contributor.departmentDipartimento di Scienze Biologiche, Geologiche e Ambientali— Sezione di Scienze della Terra, Università di Catania, Corso Italia 57, Catania 95129, Italyen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptInstitut für Geologie, Mineralogie & Geophysik, Ruhr-Universität Bochum, Bochum 44780, Germany-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Pisa, Pisa, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Palermo, Palermo, Italia-
crisitem.author.deptUniversità degli Studi di Catania-
crisitem.author.orcid0000-0001-5766-2417-
crisitem.author.orcid0000-0002-1409-5325-
crisitem.author.orcid0000-0002-0742-0679-
crisitem.author.orcid0000-0002-3099-7505-
crisitem.author.orcid0000-0002-7050-9879-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent05. General-
crisitem.classification.parent05. General-
crisitem.classification.parent05. General-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Show simple item record

WEB OF SCIENCETM
Citations 50

41
checked on Feb 10, 2021

Page view(s) 10

421
checked on Apr 17, 2024

Download(s) 50

91
checked on Apr 17, 2024

Google ScholarTM

Check

Altmetric