Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/8914
DC FieldValueLanguage
dc.contributor.authorallMollo, S.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.authorallHeap, M. J.; Institut de Physique de Globe de Strasbourgen
dc.contributor.authorallDingwell, D. B.; University of Munichen
dc.contributor.authorallHess, K-U.; University of Munichen
dc.contributor.authorallIezzi, G.; Università Chietien
dc.contributor.authorallMasotta, M.; Bayerisches Geoinstituten
dc.contributor.authorallScarlato, P.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.authorallVinciguerra, S.; Università Torinoen
dc.date.accessioned2014-02-10T10:58:33Zen
dc.date.available2014-02-10T10:58:33Zen
dc.date.issued2013en
dc.identifier.urihttp://hdl.handle.net/2122/8914en
dc.description.abstractWe present a systematic study on the influence of pressure (0.1–600 MPa), temperature (750– 1200 ◦C), carbon dioxide fugacity (logfCO2 = −4.41 to 3.60) and time (2–12 hr) on the chemical and physical properties of carbonate rock. Our experiments aim to reproduce the conditions at the periphery of magma chamber where carbonate host rock is influenced by, but not readily assimilated by, magma. This permits the investigation of the natural conditions at which circulating fluids/gases promote infiltration reactions typical of metasomatic skarns that can involve large volumes of subvolcanic carbonate basements. Results show that, providing that carbon dioxide is retained in the pore space, decarbonation does not proceed at any magmatic pressure and temperature. However, when the carbon dioxide is free to escape, decarbonation can occur rapidly and is not hindered by a low initial porosity or permeability. Together with carbon dioxide and lime, portlandite, a mineral commonly found in voluminous metasomatic skarns, readily forms during carbonate decomposition. Post-experimental analyses highlight that thermal microcracking, a result of the highly anisotropic thermal expansion of calcite, exerts a greater influence on rock physical properties (porosity, ultrasonic wave velocities and elastic moduli) than decarbonation. Our data suggest that this will be especially true at the margins of dykes or magma bodies, where temperatures can reach up to 1200 ◦C. However, rock compressive strength is significantly reduced by both thermal cracking and decarbonation, explained by the relative weakness of lime + portlandite compared to calcite, and an increase in grain size with increasing temperature. Metasomatic skarns, whose petrogenetic reactions may involve a few tens of cubic kilometres, could therefore represent an important source of volcanic instability.en
dc.language.isoEnglishen
dc.publisher.nameWiley-Blackwellen
dc.relation.ispartofGeophysical Journal Internationalen
dc.relation.ispartofseries/195(2013)en
dc.subjectVolcanic hazards and risksen
dc.titleDecarbonation and thermal microcracking under magmatic P-T-fCO2 conditions: the role of skarn substrata in promoting volcanic instabilityen
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber369-380en
dc.subject.INGV04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risken
dc.identifier.doi10.1093/gji/ggt265en
dc.description.obiettivoSpecifico2R. Laboratori sperimentali e analiticien
dc.description.journalTypeJCR Journalen
dc.description.fulltextrestricteden
dc.relation.issn0956-540Xen
dc.relation.eissn1365-246Xen
dc.contributor.authorMollo, S.en
dc.contributor.authorHeap, M. J.en
dc.contributor.authorDingwell, D. B.en
dc.contributor.authorHess, K-U.en
dc.contributor.authorIezzi, G.en
dc.contributor.authorMasotta, M.en
dc.contributor.authorScarlato, P.en
dc.contributor.authorVinciguerra, S.en
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.departmentInstitut de Physique de Globe de Strasbourgen
dc.contributor.departmentUniversity of Munichen
dc.contributor.departmentUniversity of Munichen
dc.contributor.departmentUniversità Chietien
dc.contributor.departmentBayerisches Geoinstituten
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.departmentUniversità Torinoen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptUniversità di Roma "La Sapienza"-
crisitem.author.deptUCL,UK-
crisitem.author.deptLudwig Maximilians University, Department of Earth and Environmental Sc., Theresienstr. 41/III,D-80333, Munich, Germany-
crisitem.author.deptUniversity of Munich-
crisitem.author.deptUniversità degli studi G. D'annunzio, Chieti Pescara, Italy-
crisitem.author.deptDipartimento di Scienze della Terra, Sapienza—Universita` di Roma,-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma1, Roma, Italia-
crisitem.author.orcid0000-0002-3332-789X-
crisitem.author.orcid0000-0003-1933-0192-
crisitem.author.orcid0000-0002-6939-3549-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
07_Mollo et al._2013_GJI_195_369-380.pdf1.94 MBAdobe PDF
Show simple item record

WEB OF SCIENCETM
Citations

16
checked on Feb 10, 2021

Page view(s) 50

194
checked on Apr 17, 2024

Download(s)

31
checked on Apr 17, 2024

Google ScholarTM

Check

Altmetric