Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/8891
DC FieldValueLanguage
dc.contributor.authorallThibert, Emmanuel; IRSTEAen
dc.contributor.authorallBellot, Hervé; IRSTEAen
dc.contributor.authorallRavanat, Xavier; IRSTEAen
dc.contributor.authorallOusset, Frédéric; IRSTEAen
dc.contributor.authorallPulfer, Gaëtan; IRSTEAen
dc.contributor.authorallNaaim, Mohamed; IRSTEAen
dc.contributor.authorallNaaim-Bouvet, Florence; IRSTEAen
dc.contributor.authorallNishimura, Koichi; Nagoya Universityen
dc.contributor.authorallIto, Yoichi; Nagoya Universityen
dc.contributor.authorallBaroudi, Djebar; Institute of Mountain Risk Engineeringen
dc.contributor.authorallProkop, Alexander; Institute of Mountain Risk Engineeringen
dc.contributor.authorallSchön, Peter; Institute of Mountain Risk Engineeringen
dc.contributor.authorallSoruco, P. Alvaro; IGEMAen
dc.contributor.authorallVincent, Christian; LGGEen
dc.contributor.authorallLimam, Ali; INSA-Lyonen
dc.contributor.authorallPesaresi, Damiano; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.date.accessioned2014-01-30T14:00:58Zen
dc.date.available2014-01-30T14:00:58Zen
dc.date.issued2013-10-07en
dc.identifier.urihttp://hdl.handle.net/2122/8891en
dc.description.abstractThe Lautaret full-scale avalanche test site in the southern French Alps has been used by IRSTEA (Cemagref) Research Institute since 1973. Over the recent years two avalanche paths are used to release small to medium avalanches 3 or 4 times each winter. Avalanche flows are generally dense, whether wet or dry, sometimes with a powder part. Main path n°2 (track length 800 m) is dedicated to avalanche dynamics. Within the flow of the avalanche, flow height and vertical profiles of pressure and velocity are measured along a 3.5 m tripod. The snow volume released in the starting zone is quantified by a differential analysis of laser scanning measurements set before and after triggering. A high rate positioning of the avalanche along the track is determined from terrestrial oblique photogrammetry. Above the dense layer, the saltation layer and the powder part are characterized by particles and air fluxes measurements. In path n°1 smaller in size, medium-size avalanches (track length 500 m) make this track of particular interest for experiments on structures. A macroscopic sensor-structure is set nearly 150 m downhill from the starting zone, that is, in the area where avalanches generally reach their maximum velocity. It consists is a one square-meter plate supported by a 3.5 m high steel cantilever fixed in the ground, facing the avalanche. Impact pressures are reconstructed from the cantilever deformations, while avalanche velocity is measured from optical sensors. Seismic signals generated by avalanches of those 2 paths are recorded by a 3-axial broadband seismometer. Around those experimental devices dedicated to the understanding of avalanche physics, a national and international partnership has been developed from years to years, including INSA de Lyon, CNRS and Université Joseph Fourier (France), Aalto University (Finland), Nagoya University (Japan), Boku University (Austria), IGEMA (Bolivia), OGS (Italy)en
dc.language.isoEnglishen
dc.relation.ispartofInternational Snow Science Workshop 2013en
dc.subjectAvalancheen
dc.subjecttest-siteen
dc.subjectfull-scale experimentsen
dc.titleThe full-scale avalanche test site, Lautaret, Franceen
dc.typeConference paperen
dc.description.statusPublisheden
dc.subject.INGV05. General::05.08. Risk::05.08.01. Environmental risken
dc.description.ConferenceLocationGrenoble, Franceen
dc.relation.referencesBarbolini, M. and Issler, D. (Eds.):, 2006. Avalanche test sites and research equipment in Europe: an updated overview. Final Report Deliverable D8, SATSIE Avalanche Studies and Model Validation in Europe, 172 pp. Baroudi D., and Thibert, E, 2009. An instrumented structure to measure avalanche impact pressure: error analysis from Monte Carlo Simulations. Cold Reg. Sci. Tech., 59(2-3), 242-250. Baroudi D., B. Sovilla and E. Thibert, 2011. Effect of flow regime and sensor geometry on snow avalanche impact pressure measurements. J. of Glaciology, 57(202), 277-288. Berthet-Rambaud P., Baroudi D., A. Limam, E. Thibert, Taillandier J.-M., 2008. Characterization of avalanche loading on impacted structures: a new approach based on inverses analysis. Journal of Glaciology, 54(185), 324-332. Bouchet A., Naaim, M., Ousset, F., Bellot, H., Cauvard, D., 2003. Experimental determination of constitutive equations for dense and dry avalanches: presentation of the set-up and first results. Surveys in Geophysics 24: 525 – 541. Dent, J.D., Burrell, K.J., Schmidt, D.S., Louge, M.Y., Adams, E. and Jazbutis, T.G., 1998. Density, velocity and friction measurements in a dry snow avalanche. Ann. Glaciol., 26, 247-252. Gauer, P., Issler, D., Lied, K., Kristensen, K., Iwe, H., Lied, E., Rammer, L., Schreiber, H., 2007. On full-scale avalanche measurements at the Ryggfonn test site, Norway. Cold Reg. Sci. Tech., 49, 39-53. Gerardin, M. and Rixen, D., 1993. Théorie des vibrations: application à la dynamique des structures. Masson, Paris. Issler, D., 1999. European Avalanche test sites. Overview and analysis in view of coordinated experiments. Issler, D. (Ed.)., Eidg. Inst. Schnee und Lawinenforsch, Mitt. 59. Kern, M., P. Bartelt, B. Sovilla and O. Buser. 2009. Measured shear rates in large dry and wet snow avalanches. J. Glaciol., 55(190), 327–338. Kern, M.A., P. Bartelt, B. Sovilla, 2010. Velocity profile inversion in dense avalanche flow. Ann. Glaciol., 51(54), 27-31. Meirovitch, L., 1986. Elements of vibration analysis. McGraw-Hill, New York, 2nd edition. Naaim M., T. Faug, E. Thibert, N. Eckert, G. Chambon, F. Naaim and H. Bellot, 2008. Snow avalanches pressure on obstacles. Proceedings of the International Snow Science Workshop 2008, 21-27 September 2008, Whistler, BC, Canada, International Snow Science Workshop Canada Inc. (eds), pp. 740-746. Prokop, A., 2008. Assessing the applicability of terrestrial laser scanning for spatial snow depth measurements, Cold Regions Sci. Tech., 54, pp. 155–163. Prokop, A. and Panholzer, H., 2009. Assessing the capability of terrestrial laser scanning for monitoring slow moving landslides, Nat. Hazards Earth Syst. Sci., 9, pp. 1921–1928. Prokop, A., Schön, P., Singer, F., Pulfer, G., Naaim, M., Thibert E., Determining Avalanche Modelling Input Parameters using Terrestrial Laser Scanning Technology. Procceeding of the International Snow Science Workshop 2013, Grenoble-Chamonix, 6-11 October 2013 (This issue). Pulfer, G., M. Naaim, E. Thibert and A. Soruco, 2013. Retrieving avalanche basal friction law parameters from high rate positioning of avalanches. Procceeding of the International Snow Science Workshop 2013, Grenoble-Chamonix, 6-11 October 2013 (This issue). Rognon, P.G., Chevoir, F., Bellot, H., Ousset, F., Naaim, M., Coussot, P., 2008. Rheology of dense snow flows: Inferences from steady state chuteflow experiments. J. Rheol. 52(3), 729-748. Sovilla, B., Shaer, M., Rammer, L., 2007. Measurements and analysis of full-scale avalanche impact pressure at Vallée de la Sionne test site. Cold Reg. Sci. Tech., doi: 10.1016/j.colregions.2007.05.006. Sovilla, B., Schaer, M., Kern, M., Bartelt, P., 2008. Impact pressures and flow regimes in dense snow avalanches observed at the Vallée de la Sionne test site. Journal of Geophysical Research 113(1), F01010. Sovilla, B., McElwaine, J.N., Schaer, M., Vallet, J., 2010. Variation of deposition depth with slope angle in snow avalanches: Measurements from Vallée de la Sionne, J. Geophys. Res., 115, F02016. Soruco, A., E. Thibert, C. Vincent, R. Blanc, and R. Héno., 2011. Measurement of avalanche front velocity from high-speed terrestrial digital photogrammetry, Geophysical Research Abstracts Vol. 13, EGU2011-8177, 2011. Tikhonov, A.N. and Arsenin, V.Y, 1977. Solutions of ill-posed problems. Wiley, Chichester (England). Thibert, E., D. Baroudi, A. Limam, P. Berthet-Rambaud., 2008. Avalanche impact pressure on an instrumented structure. Cold Reg. Sci. Tech., 54, 206-215. Thibert E. and D. Baroudi, 2010. Impact energy of an avalanche on a structure. Ann. Glaciol., 51(54), 19-28. Thibert E., T. Faug, H. Bellot and D. Baroudi, 2013. Avalanche impact pressure on a plate-like obstacle. Procceding of the International Snow Science Workshop 2013, Grenoble-Chamonix, 6-11 October 2013 (This issue).en
dc.description.obiettivoSpecifico3.8. Geofisica per l'ambienteen
dc.description.fulltextopenen
dc.contributor.authorThibert, Emmanuelen
dc.contributor.authorBellot, Hervéen
dc.contributor.authorRavanat, Xavieren
dc.contributor.authorOusset, Frédéricen
dc.contributor.authorPulfer, Gaëtanen
dc.contributor.authorNaaim, Mohameden
dc.contributor.authorNaaim-Bouvet, Florenceen
dc.contributor.authorNishimura, Koichien
dc.contributor.authorIto, Yoichien
dc.contributor.authorBaroudi, Djebaren
dc.contributor.authorProkop, Alexanderen
dc.contributor.authorSchön, Peteren
dc.contributor.authorSoruco, P. Alvaroen
dc.contributor.authorVincent, Christianen
dc.contributor.authorLimam, Alien
dc.contributor.authorPesaresi, Damianoen
dc.contributor.departmentIRSTEAen
dc.contributor.departmentIRSTEAen
dc.contributor.departmentIRSTEAen
dc.contributor.departmentIRSTEAen
dc.contributor.departmentIRSTEAen
dc.contributor.departmentIRSTEAen
dc.contributor.departmentIRSTEAen
dc.contributor.departmentNagoya Universityen
dc.contributor.departmentNagoya Universityen
dc.contributor.departmentInstitute of Mountain Risk Engineeringen
dc.contributor.departmentInstitute of Mountain Risk Engineeringen
dc.contributor.departmentInstitute of Mountain Risk Engineeringen
dc.contributor.departmentIGEMAen
dc.contributor.departmentLGGEen
dc.contributor.departmentINSA-Lyonen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
item.openairetypeConference paper-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextopen-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptCEMAGREF-
crisitem.author.deptIRSTEA-
crisitem.author.deptIRSTEA-
crisitem.author.deptIRSTEA-
crisitem.author.deptIRSTEA-
crisitem.author.deptNagoya University-
crisitem.author.deptNagoya University-
crisitem.author.deptInstitute of Mountain Risk Engineering-
crisitem.author.deptInstitute of Mountain Risk Engineering-
crisitem.author.deptInstitute of Mountain Risk Engineering-
crisitem.author.deptIGEMA-
crisitem.author.deptLGGE-
crisitem.author.deptINSA-Lyon-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma1, Roma, Italia-
crisitem.author.orcid0000-0002-4411-7281-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent05. General-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Conference materials
Files in This Item:
File Description SizeFormat
Pages de ISSW13_proceedings.pdf1.43 MBAdobe PDFView/Open
Show simple item record

Page view(s) 10

315
checked on Apr 20, 2024

Download(s) 50

184
checked on Apr 20, 2024

Google ScholarTM

Check