Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/8883
Authors: Roberts, A. P.* 
Florindo, F.* 
Chang, L.* 
Heslop, D.* 
Jovane, L.* 
Larrasoaña, J. C.* 
Title: Magnetic properties of Pelagic Carbonates
Journal: Earth-science reviews 
Series/Report no.: / 127 (2013)
Publisher: Elsevier Science Limited
Issue Date: Dec-2013
DOI: 10.1016/j.earscirev.2013.09.009
Keywords: Pelagic carbonate
Limestone
Magnetic minerals
Biogenic magnetite
Magnetofossils
Diagenesis
Remagnetisation
Subject Classification04. Solid Earth::04.04. Geology::04.04.08. Sediments: dating, processes, transport 
04. Solid Earth::04.05. Geomagnetism::04.05.09. Environmental magnetism 
Abstract: Pelagic carbonates are deposited far from continents, usually at water depths of 3000–6000 m, at rates below 10 cm/kyr, and are a globally important sediment type. Recent advances, with recognition of widespread preservation of biogenic magnetite (the inorganic remains of magnetotactic bacteria), have fundamentally changed our understanding of the magnetic properties of pelagic carbonates. We review evidence for the magnetic minerals typically preserved in pelagic carbonates, the effects of magnetic mineral diagenesis on paleomagnetic and environmental magnetic records of pelagic carbonates, and what magnetic properties can tell us about the open-ocean environments in which pelagic carbonates are deposited. We also discuss briefly late diagenetic remagnetisations recorded by some carbonates. Despite recent advances in our knowledge of these phenomena, much remains undiscovered. We are only at early stages of understanding how biogenic magnetite gives rise to paleomagnetic signals in sediments and whether it carries a poorly understood biogeochemical remanent magnetisation. Recently developed techniques have potential for testing how different magnetotactic bacterial species, which produce different magnetite morphologies, respond to changing nutrient and oxygenation conditions. Future work needs to test whether it is possible to develop proxies for ancient nutrient conditions from well-calibrated modern magnetotactic bacterial occurrences. A tantalizing link between giant magnetofossils and Paleogene hyperthermal events needs to be tested; much remains to be learned about the relationship between climate and the organisms that biomineralised these large and novel magnetite morphologies. Rather than being a well-worn subject that has been studied for over 60 years, the magnetic properties of pelagic carbonates hold many secrets that await discovery.
Appears in Collections:Article published / in press

Files in This Item:
File Description SizeFormat Existing users please Login
Roberts et al.pdf3.69 MBAdobe PDF
Show full item record

WEB OF SCIENCETM
Citations

70
checked on Feb 10, 2021

Page view(s) 20

249
checked on Mar 27, 2024

Download(s) 50

59
checked on Mar 27, 2024

Google ScholarTM

Check

Altmetric