Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/8881
DC FieldValueLanguage
dc.contributor.authorallChang, L.; Paleomagnetic Laboratory “Fort Hoofddijk,” Department of Earth Sciences, Utrecht University, Utrecht, Netherlandsen
dc.contributor.authorallWinklhofer, M.; Department of Earth and Environmental Sciences, Ludwig-Maximilians University, Munich, Germanyen
dc.contributor.authorallRoberts, A. P.; Research School of Earth Sciences, The Australian National University, Canberra, Australiaen
dc.contributor.authorallHeslop, D.; Research School of Earth Sciences, The Australian National University, Canberra, Australiaen
dc.contributor.authorallFlorindo, F.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
dc.contributor.authorallDekkers, M. J.; Paleomagnetic Laboratory “Fort Hoofddijk,” Department of Earth Sciences, Utrecht University, Utrecht, Netherlandsen
dc.contributor.authorallKrijgsman, W.; Paleomagnetic Laboratory “Fort Hoofddijk,” Department of Earth Sciences, Utrecht University, Utrecht, Netherlandsen
dc.contributor.authorallKodama, K.; Center for Advanced Marine Core Research, Kochi University, Nankoku, Kochi, Japanen
dc.contributor.authorallYamamoto, Y.; Center for Advanced Marine Core Research, Kochi University, Nankoku, Kochi, Japanen
dc.date.accessioned2014-01-28T13:52:46Zen
dc.date.available2014-01-28T13:52:46Zen
dc.date.issued2013-12en
dc.identifier.urihttp://hdl.handle.net/2122/8881en
dc.description.abstractPelagic marine carbonates provide important records of past environmental change. We carried out detailed low-temperature magnetic measurements on biogenic magnetite-bearing sediments from the Southern Ocean (Ocean Drilling Program (ODP) Holes 738B, 738C, 689D, and 690C) and on samples containing whole magnetotactic bacteria cells. We document a range of low-temperature magnetic properties, including reversible humped low-temperature cycling (LTC) curves. Different degrees of magnetite oxidation are considered to be responsible for the observed variable shapes of LTC curves. A dipole spring mechanism in magnetosome chains is introduced to explain reversible LTC curves. This dipole spring mechanism is proposed to result from the uniaxial anisotropy that originates from the chain arrangement of biogenic magnetite, similar to published results for uniaxial stable single domain (SD) particles. The dipole spring mechanism reversibly restores the remanence during warming in LTC measurements. This supports a previous idea that remanence of magnetosome chains is completely reversible during LTC experiments. We suggest that this magnetic fingerprint is a diagnostic indicator for intact magnetosome chains, although the presence of isolated uniaxial stable SD particles and magnetically interacting particles can complicate this test. Magnetic measurements through the Eocene section of ODP Hole 738B reveal an interval with distinct magnetic properties that we interpret to originate from less oxidized biogenic magnetite and enrichment of a biogenic “hard” component. Co-occurrence of these two magnetic fingerprints during the late Eocene in the Southern Ocean indicates less oxic conditions, probably due to increased oceanic primary productivity and organic carbon burial.en
dc.language.isoEnglishen
dc.publisher.nameAmerican Geophysical Unionen
dc.relation.ispartofJournal of geophysical research - solid earthen
dc.relation.ispartofseries12 / 118 (2013)en
dc.subjectpelagic carbonatesen
dc.subjectbiogenic magnetiteen
dc.subjectrock magnetismen
dc.subjectenvironmental magnetismen
dc.subjectODPen
dc.titleLow-temperature magnetic properties of pelagic carbonates: Oxidation of biogenic magnetite and identification of magnetosome chainsen
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber6049–6065en
dc.subject.INGV04. Solid Earth::04.04. Geology::04.04.08. Sediments: dating, processes, transporten
dc.subject.INGV04. Solid Earth::04.05. Geomagnetism::04.05.09. Environmental magnetismen
dc.identifier.doi10.1002/2013JB010381en
dc.relation.referencesAbrajevitch, A., and K. Kodama (2009), Biochemical vs. detrital mechanism of remanence acquisition in marine carbonates: A lesson from the K-T boundary interval, Earth Planet. Sci. Lett., 286, 269–277. Bazylinski, D. A., R. B. Frankel, B. R. Heywood, S. Mann, J. W. King, P. L. Donaghay, and A. K. Hanson (1995), Controlled biomineralization of magnetite (Fe3O4) and greigite (Fe3S4) in a magnetotactic bacterium, Appl. Environ. Microbiol., 61, 3232–3239. Bickford, L. R., J. M. Brownlow, and R. F. Penoyer (1957), Magnetocrystalline anisotropy in cobalt-substituted magnetic single crystals, Proc. IEE .B, 104, 238–244. Carter-Stiglitz, B., M. Jackson, and B. Moskowitz (2002), Low-temperature remanence in stable single domain magnetite, Geophys. Res. Lett., 29(7), 1129, doi:10.1029/2001GL014197. Carter-Stiglitz, B., B. Moskowitz, and M. Jackson (2004), More on the low- temperature magnetism of stable single domain magnetite: Reversibility and nonstoichiometry, Geophys. Res. Lett., 31, L06606, doi:10.1029/ 2003GL019155. Chang, L., A. P. Roberts, A. R. Muxworthy, Y. Tang, Q. Chen, C. J. Rowan, Q. Liu, and P. Pruner (2007), Magnetic characteristics of synthetic pseudo- single-domain and multi-domain greigite (Fe3S4), Geophys. Res. Lett., 34, L24304, doi:10.1029/2007GL032114. Chang, L., A. P. Roberts, Y. Tang, B. D. Rainford, A. R. Muxworthy, and Q. Chen (2008), Fundamental magnetic parameters from pure synthetic greigite (Fe3S4), J. Geophys. Res., 113, B06104, doi:10.1029/2007JB005502. Chang, L., A. P. Roberts, C. J. Rowan, Y. Tang, P. Pruner, Q. Chen, and C. S. Horng (2009), Low-temperature magnetic properties of greigite (Fe3S4), Geochem. Geophys. Geosyst., 10, Q01Y04, doi:10.1029/2008GC002276. Chang, L., A. P. Roberts, W. Williams, J. D. Fitz Gerald, J. C. Larrasoaña, L. Jovane, and A. R. Muxworthy (2012a), Giant magnetofossils and hyperthermal events, Earth Planet. Sci. Lett., 351–352, 258–269, doi:10.1016/j.epsl.2012.07.031. Chang, L., M. Winklhofer, A. P. Roberts, M. J. Dekkers, C.-S. Horng, L. Hu, and Q. W. Chen (2012b), Ferromagnetic resonance characterization of greigite (Fe3S4), monoclinic pyrrhotite (Fe7S8) and non-interacting titanomagnetite (Fe3-xTixO4), Geochem. Geophys. Geosyst., 13, Q05Z41, doi:10.1029/2012GC004063. Channell, J. E. T., C. Ohneiser, Y. Yamamoto, and M. S. Kesler (2013), Oligocene-Miocene magnetic stratigraphy carried by biogenic magnetite at sites U1334 and U1335 (equatorial Pacific Ocean), Geochem. Geophys. Geosyst., 14, 265–282, doi:10.1029/2012GC004429. Charilaou, M., M. Winklhofer, and A. U. Gehring (2011), Simulation of ferromagnetic resonance spectra of linear chains of magnetite nano- crystals, J. Appl. Phys., 109, 093903, doi:10.1063/1.3581103. Cui, Y., K. L. Verosub, and A. P. Roberts (1994), The effect of low- temperature oxidation on large multi-domain magnetite,Geophys. Res. Lett., 21, 757–760. Dunin-Borkowski, R. E., M. R. McCartney, R. B. Frankel, D. A. Bazylinski, M. Posfai, and P. R. Buseck (1998), Magnetic microstructure of magnetotactic bacteria by electron holography, Science, 282, 1868–1870. Egli, R. (2004a), Characterization of individual rock magnetic components by analysis of remanence curves: 1. Unmixing natural sediments, Stud. Geophys. Geod.,48, 391–446, doi:10.1023/B:SGEG.0000020839.45304.6d. Egli, R. (2004b), Characterization of individual rock magnetic components by analysis of remanence curves. 2. Fundamental properties of coercivity distributions, Phys. Chem. Earth, 29, 851–867. Egli, R., A. P. Chen, M. Winklhofer, K. P. Kodama, and C.-S. Horng (2010), Detection of noninteracting single domain particles using first-order reversal curve diagrams, Geochem. Geophys. Geosyst., 11, Q01Z11, doi:10.1029/2009GC002916. Fischer, A., M. Schmitz, B. Aichmayer, P. Fratzl, and D. Faivre (2011), Structural purity of magnetite nanoparticles in magnetotactic bacteria, J. R. Soc. Interface, 8, 1011–1018. Fischer, H., G. Mastrogiacomo, J. F. Löffler, R. J. Warthmann, P. G. Weidler, and A. U. Gehring (2008), Ferromagnetic resonance and magnetic characteristics of intact magnetosome chains in Magnetospirillum gryphiswaldense, Earth Planet. Sci. Lett., 270, 200–208, doi:10.1016/j. epsl.2008.03.022. Florindo, F., and A. P. Roberts (2005), Eocene-Oligocene magnetobiostra- tigraphy of ODP sites 689 and 690, Maud Rise, Weddell Sea, Antarctica, Geol. Soc. Am. Bull., 117, 46–66, doi:10.1130/B25541.1. Hanzlik, M., M. Winklhofer, and N. Petersen (2002), Pulsedfield-remanence measurements on individual magnetotactic bacteria, J. Magn. Magn. Mater., 248, 258–267, doi:10.1016/S0304-8853(02)00353-0. Harrison, R. J., and J. M. Feinberg (2008), FORCinel: An improved algorithm for calculating first-order reversal curve distributions using locally weighted regression smoothing, Geochem. Geophys. Geosyst., 9, Q05016, doi:10.1029/2008GC001987. Hartstra, R. L. (1982), A comparative study of the ARM and Isr of some natural magnetites of MD and PSD grain size, Geophys. J. R. Astron. Soc., 71, 497–518. Heslop, D., M. J. Dekkers, P. P. Kruiver, and I. H. M. van Oorschot (2002), Analysis of isothermal remanent magnetization acquisition curves using the expectation-maximization algorithm, Geophys. J. Int., 148, 58–64, doi:10.1046/j.0956-540x.2001.01558.x. Hesse, P. P. (1994), Evidence for bacterial palaeoecological origin of mineral magnetic cycles in oxic and sub-oxic Tasman sea sediments, Mar. Geol., 117, 1–17. Housen, B. A., and B. M. Moskowitz (2006), Depth distribution of magnetofossils in near-surface sediments from the Blake/Bahama Outer Ridge, western North Atlantic Ocean, determined by low-temperature magnetism, J. Geophys. Res., 111, G01005, doi:10.1029/2005JG000068. Kim, B. Y., K. P. Kodama, and R. E. Moeller (2005), Bacterial magnetite produced in water column dominates lake sediment mineral magnetism: Lake Ely, USA, Geophys. J. Int., 163, 26–37, doi:10.1111/j.1365- 246X.2005.02735.x. Kobayashi, A., J. L. Kirschvink, C. Z. Nash, R. E. Kopp, D. A. Sauer, L. E. Bertani, W. F. Voorhout, and T. Taguchi (2006), Experimental observation of magnetosome chain collapse in magnetotactic bacteria: Sedimentological, paleomagnetic, and evolutionary implications, Earth Planet. Sci. Lett., 245, 538–550, doi:10.1016/j.epsl.2006.03.041. Kopp, R. E., and J. L. Kirschvink (2008), The identification and biogeo- chemical interpretation of fossil magnetotactic bacteria, Earth Sci. Rev., 86, 42–61. Kopp, R. E., C. Z. Nash, A. Kobayashi, B. P. Weiss, D. A. Bazylinski, and J. L. Kirschvink (2006a), Ferromagnetic resonance spectroscopy for assessment of magnetic anisotropy and magnetostatic interactions: A case study of mutant magnetotactic bacteria, J. Geophys. Res., 111, B12S25, doi:10.1029/2006JB004529. Kopp, R. E., B. P. Weiss, A. C. Maloof, H. Vali, C. Z. Nash, and J. L. Kirschvink (2006b), Chains, clumps, and strings: Magnetofossil taphonomy with ferromagnetic resonance spectroscopy, Earth Planet. Sci. Lett., 247, 10–25. Kruiver, P. P., M. J. Dekkers, and D. Heslop (2001), Quantification of Magnetic coercivity components by the analysis of acquisition curves of isothermal remanent magnetization, Earth Planet. Sci. Lett., 189, 269–276, doi:10.1016/S0012-821X(01)00367-3. Larrasoaña, J. C., A. P. Roberts, L. Chang, S. A. Schellenberg, J. D. Fitz Gerald, R. D. Norris, and J. C. Zachos (2012), Magnetotactic bacterial response to Antarctic dust supply during the Palaeocene- Eocene thermal maximum, Earth Planet. Sci. Lett., 333–334, 122–133, doi:10.1016/j.epsl.2012.04.003. Lawver, L. A., and L. M. Gahagan (2003), Evolution of Cenozoic gateways in the circum-Antarctic region, Palaeogeogr. Palaeoclimatol. Palaeoecol., 198, 11–37. Lean, C. M. B., and I. N. McCave (1998), Glacial to interglacial mineral magnetic and palaeoceanographic changes at Chatham Rise, SW Pacific Ocean, Earth Planet. Sci. Lett., 163, 247–260. Li, J., Y. Pan, G. Chen, Q. Liu, L. Tian, and W. Lin (2009), Magnetite magnetosome and fragmental chain formation of Magnetospirillum magneticum AMB-1: Transmission electron microscopy and magnetic observations, Geophys. J. Int., 177, 33–42, doi:10.1111/j.1365- 246X.2009.04043.x. Li, J., et al. (2010), Biomineralization, crystallography and magnetic properties of bullet-shaped magnetite magnetosomes in giant rod magnetotactic bacteria, Earth Planet. Sci. Lett., 293, 368–376. Li, J., W. Wu, Q. Liu, and Y. Pan (2012), Magnetic anisotropy, magneto- static interactions and identification of magnetofossils, Geochem. Geophys. Geosyst., 13, Q10Z51, doi:10.1029/2012GC004384. Li, J., K. Ge, Y. Pan, W. Williams, Q. Liu, and H. Qin (2013), A strong angular dependence of magnetic properties of magnetosome chains: Implications for rock magnetism and paleomagnetism, Geochem. Geophys. Geosyst., 14, doi:10.1002/ggge.20228. Lowrie, W., and F. Heller (1982), Magnetic properties of marine limestones, Rev. Geophys., 20, 171–192. Lowrie, W., J. E. T. Channell, and W. Alvarez (1980), A review of magnetic stratigraphy investigations in Cretaceous pelagic carbonate rocks, J. Geophys. Res., 85, 3597–3605, doi:10.1029/JB085iB07p03597. Maher, B. A. (1988), Magnetic properties of some synthetic sub-micron magnetites, Geophys. J. Int., 94, 83–96, doi:10.1111/j.1365-246X.1988. tb03429.x. Maloof, A. C., R. E. Kopp, J. P. Grotzinger, D. A. Fike, T. Bosak, H. Vali, P. M. Poussart, B. P. Weiss, and J. L. Kirschvink (2007), Sedimentary iron cycling and the origin and preservation of magnetization in platform carbonate muds, Andros Island, Bahamas, Earth Planet. Sci. Lett., 259, 581–598, doi:10.1016/j.epsl.2007.05.021. Mauritsch, H. J., and P. Turner (1975), The identification of magnetite in limestones using the low-temperature transition, Earth Planet. Sci. Lett., 24, 414–418. Moskowitz, B. M., R. B. Frankel, and D. A. Bazylinski (1993), Rock magnetic criteria for the detection of biogenic magnetite, Earth Planet. Sci. Lett., 120, 283–300, doi:10.1016/0012-821X(93)90245-5. Moskowitz, B. M., M. Jackson, and C. Kissel (1998), Low temperature magnetic behavior of titanomagnetites, Earth Planet. Sci. Lett., 157, 141–149, doi:10.1016/S0012-821X(98)00033-8. Moskowitz, B. M., D. A. Bazylinski, R. Egli, R. B. Frankel, and K. J. Edwards (2008), Magnetic properties of marine magnetotactic bacteria in a seasonally stratified coastal pond (Salt Pond, MA, USA), geophys. J. Int., 174, 75–92, doi:10.1111/j.1365-246X.2008.03789.x. Muxworthy, A. R., and E. McClelland (2000), Review of the low tempera- ture magnetic properties of magnetite from a rock magnetic perspective, Geophys. J. Int., 140, 101–114. Muxworthy, A. R., and W. Williams (2006), Low-temperature cooling behavior of single-domain magnetite: Forcing of the crystallographic axes and interactions, J. Geophys. Res., 111, B07103, doi:10.1029/ 2006JB004298. Muxworthy, A. R., D. J. Dunlop, and Ö. Özdemir (2003), Low-temperature cycling of isothermal and anhysteretic remanence: Microcoercivity and magnetic memory, Earth Planet. Sci. Lett., 205, 173–184, doi:10.1016/ S0012-821X(02)01039-7. Özdemir, Ö., and D. J. Dunlop (2010), Hallmarks of maghemitization in low- temperature remanence cycling of partially oxidized magnetite nanoparticles, J. Geophys. Res., 115, B02101, doi:10.1029/2009JB006756. Özdemir, Ö., D. J. Dunlop, and B. M. Moskowitz (1993), The effect of oxidation on the Verwey transition in magnetite, Geophys. Res. Lett., 20, 1671–1674, doi:10.1029/93GL01483. Pan, Y., N. Petersen, A. F. Davila, L. Zhang, M. Winklhofer, Q. Liu, M. Hanzlik, and R. Zhu (2005a), The detection of bacterial magnetite in recent sediments of Lake Chiemsee (southern Germany), Earth Planet. Sci. Lett., 232, 109–123, doi:10.1016/j.epsl.2005.01.006. Pan, Y., N. Petersen, M. Winklhofer, A. F. Davila, Q. Liu, T. Frederichs, M. Hanzlik, and R. Zhu (2005b), Rock magnetic properties of uncultured magnetotactic bacteria, Earth Planet. Sci. Lett., 237, 311–325, doi:10.1016/j.epsl.2005.06.029. Passier, H. F., and M. J. Dekkers (2002), Iron oxide formation in the active oxidation front above sapropel S1 in the eastern Mediterranean Sea as derived from low-temperature magnetism, Geophys. J. Int., 150, 230–240, doi:10.1046/j.1365-246X.2002.01704.x. Peck, J. A., and J. W. King (1996), Magnetofossils in the sediment of Lake Baikal, Siberia, Earth Planet. Sci. Lett., 140, 159–172, doi:10.1016/0012- 821X(96)00027-1. Penninga, I., H. de Waard, B. M. Moskowitz, D. A. Bazylinski, and R. B. Frankel (1995), Remanence measurements on individual magnetotactic bacteria using a pulsed magnetic field, J. Magn. Magn. Mater., 149, 279–286. Persico, D., C. Fioroni, and G. Villa (2011), A refined calcareous nannofossil biostratigraphy for the Middle Eocene-Early Oligocene Southern Ocean ODP sites, Palaeogeogr. Palaeoclimatol. Palaeoecol., 335–336, 12–23, doi:10.1016/j.paleo.2011.05.017. Pike, C. R., A. P. Roberts, and K. L. Verosub (1999), Characterizing interac- tions in fine magnetic particle systems using first order reversal curves, J. Appl. Phys., 85, 6660–6667, doi:10.1063/1.370176. Prozorov, R., T. Prozorov, S. K. Mallapragada, B. Narasimhan, T. J. Williams, and D. A. Bazylinski (2007), Magnetic irreversibility and the Verwey transition in nanocrystalline bacterial magnetite, Phys. Rev. B, 76, 054406, doi:10.1103/PhysRevB.76.054406. Roberts, A. P., C. R. Pike, and K. L. Verosub (2000), First order reversal curve diagrams: A new tool for characterizing the magnetic properties of natural samples, J. Geophys. Res., 105, 28,461–28,475, doi:10.1029/ 2000JB900326. Roberts, A. P., F. Florindo, G. Villa, L. Chang, L. Jovane, S. M. Bohaty, J. C. Larrasoaña, D. Heslop, and J. D. Fitz Gerald (2011a), magnetotactic bacterial abundance in pelagic marine environments is limited by organic carbon flux and availability of dissolved iron, Earth Planet. Sci. Lett., 310, 441–452, doi:10.1016/j.epsl.2011.08.011. Roberts, A. P., L. Chang, C. J. Rowan, C.-S. Horng, and F. Florindo (2011b), Magnetic properties of sedimentary greigite (Fe3S4): An update, Rev. Geophys., 49, RG1002, doi:10.1029/2010RG000336. Roberts, A. P., L. Chang, D. Heslop, F. Florindo, and J. C. Larrasoaña (2012), Searching for single domain magnetite in the “pseudo-single-do- main” sedimentary haystack: Implications of biogenic magnetite preserva- tion for sediment magnetism and relative paleointensity determinations, J. Geophys. Res., 117, B08104, doi:10.1029/2012JB009412. Roberts, A. P., F. Florindo, L. Chang, D. Heslop, L. Jovane, and J. C. Larrasoaña (2013), Magnetic properties of pelagic marine carbonates, Earth Sci. Rev., 127, 111–139, doi:10.1016/j.earscirev.2013.09.009. Scheffel, A., A. Gärdes, K. Grünberg, G. Wanner, and D. Schüler (2008), The major magnetosome proteins MamGFDC are not essential for magne- tite biomineralization in Magnetospirillum gryphiswaldense, but regulate the size of magnetosome crystals, J. Bacteriol., 190, 377–386. Schüler, D., and M. Köhler (1992), The isolation of a new magnetic spirillum, Zentralbl. Mikrobiol., 147, 150–151. Simpson, E. T., T. Kasama, M. Pósfai, P. R. Buseck, R. J. Harrison, and R. E. Dunin-Borkowski (2005), Magnetic induction mapping of magnetite chains in magnetotactic bacteria at room temperature and close to the Verwey transition using electron holography, J. Phys.: Conf. Ser., 17, 108–121. Smirnov, A. V., and J. A. Tarduno (2000), Low-temperature magnetic properties of pelagic sediments (Ocean Drilling Program Site 805C): Tracers of maghemitization and magnetic mineral reduction, J. Geophys. Res., 105, 16,457–16,471, doi:10.1029/2000JB900140. Tarduno, J. A. (1994), Temporal trends of magnetic dissolution in the pelagic realm: Gauging paleoproductivity?, Earth Planet. Sci. Lett., 123, 39–48, doi:10.1016/0012-821X(94)90255-0. Tarduno, J. A. (1995), Superparamagnetism and reduction diagenesis in pelagic sediments: Enhancement or depletion?, Geophys. Res. Lett., 22, 1337–1340, doi:10.1029/95GL00888. Tarduno, J. A., W. L. Tian, and S. Wilkison (1998), Biogeochemical remanent magnetization in pelagic sediments of the western equatorial Pacific Ocean, Geophys. Res. Lett., 25, 3987–3990, doi:10.1029/ 1998GL900079. Torii, M. (1997), Low-temperature oxidation and subsequent downcore dis- solution of magnetite in deep-sea sediments, ODP Leg 161 (western Mediterranean), J. Geomagn. Geoelectr., 49, 1233–1245. Valet, J.-P., and L. Meynadier (1993), Geomagnetic field intensity and reversals during the past four million years, Nature, 366, 91–95. Vali, H., O. Förster, G. Amarantidis, and N. Petersen (1987), Magnetotactic bacteria and their magnetofossils in sediments,Earth Planet. Sci. Lett., 86, 389–400, doi:10.1016/0012-821X(87)90235-4. van Velzen, A. J., and J. D. A. Zijderveld (1990), Rock magnetism of the arly Pliocene Trubi formation at Eraclea Minoa (Sicily), Geophys. Res. Lett., 17, 791–794. Verwey, E. J. W. (1939), Electronic conduction of magnetite (Fe3O4) and its transition point at low temperatures, Nature, 144, 327–328. Walz, F. (2002), The Verwey transition - A topical review, J. Phys. Condens. Matter, 14, R285–R340, doi:10.1088/0953-8984/14/12/203. Weiss, B. P., S. S. Kim, J. L. Kirschvink, R. E. Kopp, M. Sankaran, A. Kobayashi, and A. Komeili (2004), Ferromagnetic resonance and low temperature magnetic tests for biogenic magnetite, Earth Planet. Sci. Lett., 224, 73–89. Yamazaki, T. (2009), Environmental magnetism of Pleistocene sediments in the North Pacific and Ontong-Java Plateau: Temporal variations of detrital and biogenic components, Geochem. Geophys. Geosyst., 10, Q07Z04, doi:10.1029/2009GC002413. Yamazaki, T. (2012), Paleoposition of the intertropical convergence zone in the eastern Pacific inferred from glacial-interglacial changes in terrigenous and biogenic magnetic mineral fractions, Geology, 40, 151–154. Yamazaki, T., and M. Ikehara (2012), Origin of magnetic mineral concentra- tion variation in the Southern Ocean, Paleoceanography, 27, PA2206, doi:10.1029/2011PA002271. Yamazaki, T., and N. Ioka (1997), Environmental rock magnetism of pelagic clay: Implications for Asian eolian input to the North Pacific since the Pliocene, Paleoceanography, 12, 111–124. Yamazaki, T., and H. Kawahata (1998), Organic carbon flux controls the morphology of magnetofossils in marine sediments, Geology, 26, 1064–1066. Yamazaki, T., and P. Solheid (2011), Maghemite-to-magnetite reduction across the Fe-redox boundary in a sediment core from the Ontong-Java Plateau: Influence on relative palaeointensity estimation and environmen- tal magnetic application, Geophys. J. Int., 185, 1243–1254, doi:10.1111/ j.1365-246X.2011.05021.x. Yamazaki, T., A. L. Abdeldayem, and K. Ikehara (2003), Rock-magnetic changes with reduction diagenesis in Japan Sea sediments and preserva- tion of geomagnetic secular variation in inclination during the last 30,000 years, Earth Planets Space, 55, 327–340.en
dc.description.obiettivoSpecifico2.2. Laboratorio di paleomagnetismoen
dc.description.journalTypeJCR Journalen
dc.description.fulltextrestricteden
dc.relation.issn0148-0227en
dc.contributor.authorChang, L.en
dc.contributor.authorWinklhofer, M.en
dc.contributor.authorRoberts, A. P.en
dc.contributor.authorHeslop, D.en
dc.contributor.authorFlorindo, F.en
dc.contributor.authorDekkers, M. J.en
dc.contributor.authorKrijgsman, W.en
dc.contributor.authorKodama, K.en
dc.contributor.authorYamamoto, Y.en
dc.contributor.departmentPaleomagnetic Laboratory “Fort Hoofddijk,” Department of Earth Sciences, Utrecht University, Utrecht, Netherlandsen
dc.contributor.departmentDepartment of Earth and Environmental Sciences, Ludwig-Maximilians University, Munich, Germanyen
dc.contributor.departmentResearch School of Earth Sciences, The Australian National University, Canberra, Australiaen
dc.contributor.departmentResearch School of Earth Sciences, The Australian National University, Canberra, Australiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
dc.contributor.departmentPaleomagnetic Laboratory “Fort Hoofddijk,” Department of Earth Sciences, Utrecht University, Utrecht, Netherlandsen
dc.contributor.departmentPaleomagnetic Laboratory “Fort Hoofddijk,” Department of Earth Sciences, Utrecht University, Utrecht, Netherlandsen
dc.contributor.departmentCenter for Advanced Marine Core Research, Kochi University, Nankoku, Kochi, Japanen
dc.contributor.departmentCenter for Advanced Marine Core Research, Kochi University, Nankoku, Kochi, Japanen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptNational Oceanography Centre, Southampton, University of Southampton, Southampton, UK-
crisitem.author.deptDepartment of Earth and Environmental Sciences, Ludwig-Maximilians University, Munich, Germany-
crisitem.author.deptNational Oceanography Centre, University of Southampton, European Way, Southampton SO14 3ZH, UK-
crisitem.author.deptResearch School of Earth Sciences, The Australian National University, Canberra, ACT 0200, Australia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione AC, Roma, Italia-
crisitem.author.deptPaleomagnetic Laboratory “Fort Hoofddijk,” Department of Earth Sciences, Utrecht University, Utrecht, Netherlands-
crisitem.author.deptCenter for Advanced Marine Core Research, Kochi University, Nankoku, Kochi, Japan-
crisitem.author.deptCenter for Advanced Marine Core Research, Kochi University, Nankoku, Kochi, Japan-
crisitem.author.orcid0000-0001-8245-0555-
crisitem.author.orcid0000-0002-6058-9748-
crisitem.author.orcid0000-0002-4156-3841-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
Chang et al.pdf1.93 MBAdobe PDF
Show simple item record

WEB OF SCIENCETM
Citations 50

31
checked on Feb 10, 2021

Page view(s) 20

285
checked on Apr 24, 2024

Download(s)

49
checked on Apr 24, 2024

Google ScholarTM

Check

Altmetric