Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/8877
DC FieldValueLanguage
dc.contributor.authorallMarotta, E.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
dc.contributor.authorallde Vita, S.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
dc.date.accessioned2014-01-27T07:26:33Zen
dc.date.available2014-01-27T07:26:33Zen
dc.date.issued2014en
dc.identifier.urihttp://hdl.handle.net/2122/8877en
dc.description.abstractA set of analogue models has been carried out to understand the role of an asymmetric magma chamber on the resurgence-related deformation of a previously deformed crustal sector. The results are then compared with those of similar experiments, previously performed using a symmetric magma chamber. Two lines of experiments were performed to simulate resurgence in an area with a simple graben-like structure and resurgence in a caldera that collapsed within the previously generated graben-like structure. On the basis of commonly accepted scaling laws, we used dry-quartz sand to simulate the brittle behaviour of the crust and Newtonian silicone to simulate the ductile behaviour of the intrudingmagma. An asymmetric shape of themagma chamber was simulated bymoulding the upper surface of the silicone. The resulting empty spacewas then filled with sand. The results of the asymmetric-resurgence experiments are similar to those obtained with symmetrically shaped silicone. In the samplewith a simple graben-like structure, resurgence occurs through the formation of a discrete number of differentially displaced blocks. The most uplifted portion of the deformed depression floor is affected by newly formed, high-angle, inward-dipping reverse ring-faults. The least uplifted portion of the caldera is affected by normal faults with similar orientation, either newly formed or resulting from reactivation of the preexisting graben faults. This asymmetric block resurgence is also observed in experiments performed with a previous caldera collapse. In this case, the caldera-collapse-related reverse ring-fault is completely erased along the shortened side, and enhances the effect of the extensional faults on the opposite side, so facilitating the intrusion of the silicone. Themost uplifted sector, due to an asymmetrically shaped intrusion, is always in correspondence of the thickest overburden. These results suggest that the stress field induced by resurgence is likely dictated by the geometry of the intruding magma body, and the related deformation is partially controlled by pre-existing tectonic and/or volcano-tectonic structures.en
dc.language.isoEnglishen
dc.publisher.nameElsevier Science Limiteden
dc.relation.ispartofJournal of volcanology and geothermal researchen
dc.relation.ispartofseries/272 (2014)en
dc.subjectAnalogue modelen
dc.subjectCollapse calderaen
dc.subjectResurgenceen
dc.subjectMagma chamberen
dc.titleThe role of pre-existing tectonic structures and magma chamber shape on the geometry of resurgent blocks: Analogue modelsen
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber23-38en
dc.subject.INGV04. Solid Earth::04.04. Geology::04.04.09. Structural geologyen
dc.identifier.doi10.1016/j.jvolgeores.2013.12.005en
dc.relation.referencesAcocella, V., Funiciello, R., 1999. The interaction between regional and local tectonics during resurgent doming: the case of the island of Ischia, Italy. J. Volcanol. Geotherm.Della Seta,M.,Marotta, E., Orsi, G., de Vita, S., Sansivero, F., Fredi, P., 2012. Slope instability induced by volcano-tectonics as an additional source of hazard in active volcanic areas: the case of Ischia island (Italy). Bull. Volcanol. 74 (1), 79–106. http:// dx.doi.org/10.1007/s00445-011-0501-0. Di Napoli, R., Martorana, R., Orsi, G., Aiuppa, A., Camarda, M., De Gregorio, S., Gagliano Candela, E., Luzio, D., Messina, N., Pecoraino, G., Bitetto, M., de Vita, S., Valenza, M., 2011. The structure of a hydrothermal system from an integrated geochemical, geophysical and geological approach: the Ischia Island case study. Geochem. Geophys. Geosyst. 12 (7). http://dx.doi.org/10.1029/2010GC003476. Di Renzo, V., Arienzo, I., Civetta, L., D'Antonio, M., Tonarini, S., Di Vito, M.A., Orsi, G., 2011. Themagmatic feeding systemof the Campi Flegrei caldera: architecture and temporal evolution. Chem. Geol. 281, 227–241. Di Vito,M.A., Isaia, R., Orsi, G., Southon, J., de Vita, S., D'Antonio, M., Pappalardo, L., Piochi, M., 1999. Volcanism and deformation since 12,000 years at the Campi Flegrei caldera (Italy). J. Volcanol. Geotherm. Res. 91 (2–4), 221–246. Donnadieu, F., Merle, O., 1998. Experiments on the indentation process during cryptodome intrusions: new insights into Mount St. Helens deformation. Geology 26, 79–82. Faccenna, C., Funiciello, R., Bruni, A., Mattei, M., Cagnotti, L., 1994. Evolution of a transfer related basin: the Ardea basin (Latium, Central Italy). Basin Res. 6, 35–46. Hailermariam, H., Mulugeta, G., 1998. Temperature-dependent rheology of bouncing putties used as rock analogs. Tectonophysics 294, 131–141. Handin, J., 1966. Strength and ductility. In: Clark Jr., S.P. (Ed.), Handbook of Physical Constants. Geol. Soc. Am. Bull, 97, pp. 223–290. Henry, C.H., Price, J.G., 1984. Variations in caldera development in the tertiary volcanic field of Trans-Pecos, Texas. J. Geophys. Res. 89, 8765–8786. Hobbs, B.E.,Means,W.D.,Williams, P.F., 1976. An outline of structural geology. JohnWiley & Sons, New York, Chichester, Brisbane, Toronto, Singapore (571 pp.). Hoek, E., Kaiser, P.K., Bawden, W.F., 1995. Support of underground excavations in hard rock. A.A. Balkema, Rotterdam 215. Holohan, E.P., Troll, V.R.,Walter, T.R.,Münn, S.,McDonnell, S., Shipton, Z.K., 2005. Elliptical calderas in active tectonic settings: an experimental approach. J. Geophys. Res. 144, 119–136. Holohan, E.P., van Wyk de Vries, B., Troll, V.R., 2008. Analogue models of caldera collapse in strike-slip tectonic regimes. Bull. Volcanol. 70, 773–796. Hubbert, M.K., 1937. Theory of scalemodels as applied to the study of geologic structures. Geol. Soc. Am. Bull. 48, 1459–1520. Kennedy, B., Stix, J., Lavallée, Y., Vallance, J., 1999. Controls on caldera structure and morphology: results from experimental simulations. EOS Trans. Am. Geophys. Union 80, F1121. Komuro, H., 1987. Experiments on cauldron formation: a polygonal cauldron and ring fractures. J. Volcanol. Geotherm. Res. 31, 139–149. Komuro, H., Fujita, Y., Kodama, K., 1984. Numerical and experimental models on the formation mechanism of collapse basins during the Green Tuff Orogenesis of Japan. Bull. Volcanol. 47, 649–666. Liotta, D., 1991. The Arbia-Val Marecchia line, Northern Apennines. Eclogae Geol. Helv. 84 (2), 413–430. Lipman, P.W., 1984. The roots of ash flow calderas inthe western North America: windows into the tops of granitic batholiths. J. Geophys. Res. 89 (B10), 8801–8841. Lipman, P.W., 1997. Subsidence of ash-flow calderas: relation to caldera size and magmachamber geometry. Bull. Volcanol. 59, 198–218. Marotta, E., Orsi, G., de Vita, S., 2005. Resurgent Calderas: analogue models and field data. Acta Vulcanol. 17 (1–2), 23–28. Marti, J., Ablay, G.J., Redshaw, L.T., Sparks, R.S.J., 1994. Experimental studies of collapse calderas. J. Geol. Society, London 151, 919–929. Merle, O., 1998. Internal strain within lava flows from analogue modeling. J. Vocanol. Geotherm. Res. 81, 189–206. Merle, O., Vendeville, B., 1995. Experimental modelling of thin-skinned shortening around magmatic intrusions. Bull. Volcanol. 57, 33–43. Newhall, C.G., Dzurisin, D., 1988. Historical unrest at large calderas of the world. U.S. Geological Survey. (1109 pp.). Orsi, G., Gallo, G., Zanchi, A., 1991. Simple-shearing block resurgence in caldera depression. A model from Pantelleria and Ischia. J. Volcanol. Geotherm. Res. 47, 1–11. Orsi, G., de Vita, S., Di Vito, M., 1996. The restless, resurgent Campi Flegrei nested caldera (Italy): constraints on its evolution and configuration. J. Volcanol. Geotherm. Res. 74, 179–214. Orsi, G., Civetta, L., Del Gaudio, C., de Vita, S., Di Vito, M.A., Isaia, R., Petrazzuoli, S.M., Ricciardi, G.P., Ricco, C., 1999a. Short-term ground deformations and seismicity in the resurgent Campi Flegrei caldera (Italy): an example of active block-resurgence in a densely populated area. J. Volcanol. Geotherm. Res. 91 (2–4), 415–451. Orsi, G., Patella, D., Piochi, M., Tramacere, A., 1999b. Magneticmodelling of the Phlegraean volcanic district with extension to the Ponza archipelago (Italy). J. Volcanol. Geotherm. Res. 91, 345–360. Paoletti, V., D'Antonio, M., Rapolla, A., 2013. The structural setting of the Ischia Island (Phlegraean Volcanic District, Southern Italy): inferences from geophysics and geochemistry. J. Volcanol. Geotherm. Res. 249, 155–173. Ramberg, H., 1981. Gravity, deformation and the Earth's crust, 2nd ed. Academic Press, London (452 pp.). Ramsay, J.G., Huber, M.I., 2002. The techniques of structural geology. Volume 2: folds and fractures. Academic Press 309–700. Roche, O., Druitt, T.H., Merle, O., 2000. Experimental study of caldera formation. J. Geophys. Res. 105 (B1), 395–416. Roman-Berdiel, T., Gapais, D., Brun, J.P., 1995. Analogue models of laccolith formation. J. Struct. Geol. 17, 1337–1346. Self, S., Goff, F., Gardner, J.N., Wright, J.V., Kite, W.M., 1986. Explosive rhyolitic volcanism in the Jemez Mountains: vent location, caldera development and relation to regional structure. J. Geophys. Res. 91, 1779–1798. Res. 88, 109–123. Acocella, V., Funiciello, R., 2002. Transverse structures and volcanic activity along the Tyrrhenian margin of central Italy. Boll. Soc. Geol. It., Sp. 1, 739–747. Acocella, V., Cifelli, F., Funiciello, R., 2000a. Analogue models of collapse calderas and resurgent domes. J. Volcanol. Geotherm. Res. 104, 81–96. Acocella, V., Faccenna, C., Funiciello, R., Rossetti, F., 2000b. Analogue modelling of extensional transfer zones. Boll. Soc. Geol. Ital. 119, 85–96. Acocella, V., Cifelli, F., Funiciello, R., 2001. The control of overburden thickness on resurgent domes: insights from analogue models. J. Volcanol. Geotherm. Res. 111, 137–153. Acocella, V., Funiciello, R., Marotta, E., Orsi, G., de Vita, S., 2004. The role of extensional structures on experimental caderas and resurgence. J. Volcanol. Geotherm. Res. 129, 199–217. Bailey, R.A., Dalrymple, G.B., Lanphere, M.A., 1976. Volcanism, structure, and geochronology of Long Valley Caldera, Mono County, California. J. Geophys. Res. 81, 725–744. Benn, K., Odonne, F., de Saint Blanquat, M., 1998. Pluton emplacement during transpression in brittle crust: new views from analogue experiments. Geology 26, 1079–1082. Civetta, L., D'Antonio, M., Orsi, G., Tilton, G.R., 1998. The geochemistry of volcanic rocks from Pantelleria Island, Sicily Channel: petrogenesis and characteristics of themantle source region. J. Pet. 39 (8), 1453–1491. Civile, D., Lodolo, E., Tortorici, L., Lanzafame, G., Brancolini, G., 2008. Relationships between magmatism and tectonics in a continental rift: the Pantelleria Island region (Sicily channel, Italy). Mar. Geol. 251 (1–2), 32–46. Coulomb, C.A., 1773. Sur une application des règles de maximis et minimis a quelques problèmes de statique relatifs à l'architecture. Acad. Roy. des Sci., Memoires de Math. et de Physique par divers savans 7, 343–382. de Vita, S., Orsi, G., Civetta, L., Carandente, A., D'Antonio, M., Di Cesare, T., Di Vito, M., Fisher, R.V., Isaia, R., Marotta, E., Ort, M., Pappalardo, L., Piochi, M., Southon, J., 1999. The Agnano-Monte Spina eruption (4100 years BP) in the restless Campi Flegrei caldera (Italy). J. Volcanol. Geotherm. Res. 91 (2–4), 269–301. de Vita, S., Orsi, G., Di Vito, M., Marotta, E., Sansivero, F., 2005. The role of pre-existing tectonic structures on the geometry of calderas and resurgent blocks: a review. Acta Vulcanol. 17 (1–2), 9–22. de Vita, S., Sansivero, F., Orsi, G., Marotta, E., 2006. Cyclical slope instability and volcanism related to volcano-tectonism in resurgent calderas: the Ischia island (Italy) case study. Eng. Geol. 86, 148–165. de Vita, S., Sansivero, F., Orsi, G.,Marotta, E., Piochi,M., 2010. Volcanological and structural evolution of the Ischia resurgent caldera (Italy) over the past 10 ka. In: Groppelli, G., Viereck, L. (Eds.), Stratigraphy and geology in volcanic areas. GSA Book series, Special paper, 464, pp. 193–23en
dc.description.obiettivoSpecifico1V. Storia e struttura dei sistemi vulcanicien
dc.description.journalTypeJCR Journalen
dc.description.fulltextrestricteden
dc.relation.issn0377-0273en
dc.relation.eissn1872-6097en
dc.contributor.authorMarotta, E.en
dc.contributor.authorde Vita, S.en
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OV, Napoli, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OV, Napoli, Italia-
crisitem.author.orcid0000-0001-7211-2173-
crisitem.author.orcid0000-0002-5337-7560-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
Marotta & de Vita_2014.pdf4.89 MBAdobe PDF
Show simple item record

WEB OF SCIENCETM
Citations

6
checked on Feb 10, 2021

Page view(s) 50

429
checked on Mar 27, 2024

Download(s)

49
checked on Mar 27, 2024

Google ScholarTM

Check

Altmetric