Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/8864
DC FieldValueLanguage
dc.contributor.authorallSettimi, A.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
dc.contributor.authorallPietrella, M.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
dc.contributor.authorallPezzopane, M.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
dc.contributor.authorallZolesi, B.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
dc.contributor.authorallBianchi, C.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
dc.contributor.authorallScotto, C.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
dc.date.accessioned2014-01-10T08:34:36Zen
dc.date.available2014-01-10T08:34:36Zen
dc.date.issued2014-01-15en
dc.identifier.urihttp://hdl.handle.net/2122/8864en
dc.description.abstractThe present paper proposes to discuss the ionospheric absorption, assuming a quasi-flat layered ionospheric medium, with small horizontal gradients. A recent complex eikonal model [Settimi et al., 2013b] is applied, useful to calculate the absorption due to the ionospheric D-layer, which can be approximately characterized by a linearized analytical profile of complex refractive index, covering a short range of heights between h1= 50 km and h2= 90 km. Moreover, Settimi et al. [2013c] have already compared the complex eikonal model for the D-layer with the analytical Chapman’s profile of ionospheric electron density; the corresponding absorption coefficient is more accurate than Rawer’s theory [1976] in the range of middle critical frequencies. Finally, in this paper, the simple complex eikonal equations, in quasi-longitudinal (QL) approximation, for calculating the non-deviative absorption coefficient due to the propagation across the D-layer are encoded into a so called COMPLEIK (COMPLex EIKonal) subroutine of the IONORT (IONOspheric Ray-Tracing) program [Azzarone et al., 2012]. The IONORT program, which simulates the three-dimensional (3-D) ray-tracing for high frequencies (HF) waves in the ionosphere, runs on the assimilative ISP (IRI-SIRMUP-P) discrete model over the Mediterranean area [Pezzopane et al., 2011]. As main outcome of the paper, the simple COMPLEIK algorithm is compared to the more elaborate semi-empirical ICEPAC formula [Stewart, undated], which refers to various phenomenological parameters such as the critical frequency of E-layer. COMPLEIK is reliable just like the ICEPAC, with the advantage of being implemented more directly. Indeed, the complex eikonal model depends just on some parameters of the electron density profile, which are numerically calculable, such as the maximum height.en
dc.language.isoEnglishen
dc.publisher.nameElsevier Science Limiteden
dc.relation.ispartofAdvances in space researchen
dc.relation.ispartofseries2/53 (2014)en
dc.subjectIonospheric D-layeren
dc.subjectQuasi-Longitudinal propagationen
dc.subjectnon-deviative absorptionen
dc.subjectICEPAC formulaen
dc.subjectISP-IONORTen
dc.subjectComplex Eikonal theoryen
dc.titleThe COMPLEIK subroutine of the IONORT-ISP system for calculating the non-deviative absorption: A comparison with the ICEPAC formulaen
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber201-218en
dc.subject.INGV01. Atmosphere::01.02. Ionosphere::01.02.99. General or miscellaneousen
dc.subject.INGV01. Atmosphere::01.02. Ionosphere::01.02.01. Ion chemistry and compositionen
dc.subject.INGV01. Atmosphere::01.02. Ionosphere::01.02.04. Plasma Physicsen
dc.subject.INGV01. Atmosphere::01.02. Ionosphere::01.02.05. Wave propagationen
dc.subject.INGV05. General::05.05. Mathematical geophysics::05.05.99. General or miscellaneousen
dc.subject.INGV05. General::05.07. Space and Planetary sciences::05.07.99. General or miscellaneousen
dc.identifier.doi10.1016/j.asr.2013.10.035en
dc.relation.referencesAppleton, E. V. and F. W. Chapman (1932). The collisional friction experienced by vibrating electrons in ionized air, Proc. Phys. Soc., London, 44 (243), 246–254. Azzarone, A., C. Bianchi, M. Pezzopane, M. Pietrella, C. Scotto and A. Settimi (2012). IONORT: A Windows software tool to calculate the HF ray tracing in the ionosphere, Comp. Geosc., 42, 57-63, doi:10.1016/j.cageo.2012.02.008. Barghausen, A. F., J. W. Finney, L. L. Proctor and L. D. Schultz (1969). Predicting long-term operational parameters of high-frequency sky-wave telecommunication systems, ESSA Technical Report ERL 110-ITS78, Washington, U.S.A.. Bianchi, S., U. Sciacca and A. Settimi (2009). Teoria della propagazione radio nei mezzi disomogenei (Metodo dell’iconale), Quaderni di Geofisica, 75, 14 pp. [in Italian]. Bibl, K., A. Paul and K. Rawer (1961). Absorption in the D and E regions and its time variation, J. Atmos. Terr. Phys., 23, 244-259. Budden, K. G. (1965). Effect of electron collisions on the formulas of magnetoionic theory, Radio Science, 69D(2), 191-211. Budden, K. G. (1988). The propagation of the radio wave. Cambridge University Press, Cambridge, UK, 688 pp. CCIR (1970). CCIR interim method for estimating sky-wave field strength and transmission loss at frequencies between the approximate limits of 2 and 30 MHz, International Radio Consultative Committee (CCIR) Report 252-2, International Telecomunication Union (ITU), Geneva, Switzerland, 202 pp.. Davis, C. J., and C. G. Johnson (2005). Lightning-induced intensification of the ionospheric sporadic E layer, Nature, 435, 799-801, doi:10.1038/nature03638. Davies, K. (1990). Ionospheric Radio, Peter Peregrinus Ltd. (ed.), London, UK, 508 pp. Fejer, J. A. (1961). The absorption of short radio waves in the ionospheric D and E regions, J. Atmos. Terr. Phys., 23, 260-274. George, P. L. (1971). The calculation of ionospheric absorption in HF radio propagation prediction, WRE-Technical Note-A207(AP), Department of Supply, Weapons Research Establishment, South Australia. Hunsucker, R. D. (1991). Radio techniques for probing the terrestrial ionosphere, in Series on physics and chemistry in space, Vol. 22, L. Lanzerotti (Editor), Springer-Verlag, New York, USA, 293 pp.. International Reference Ionosphere (IRI), (2007). Virtual Ionosphere, Thermosphere, Mesosphere Observatory (VITMO) (http://ccmc.gsfc.nasa.gov/modelweb/models/iri_vitmo.php). Jones, R. M. and J. J. Stephenson (1975). A versatile three-dimensional ray tracing computer program for radio waves in the ionosphere. OT Report, 75-76, U. S. Department of Commerce, Office of Telecommunication, U. S. Government Printing Office, Washington, USA, 185 pp. Krishnaswamy, S., D. L. Detrick and T. J. Rosenberg (1985). The inflection point method of determining riometer quiet day curves, Radio Science, 20(1), 123-136. Laitinen, P. O. and G. W. Haydon (1962). Analysis and prediction of sky-wave field intensities in the high frequency band, U. S. Army Signal Radio Propagation Agency Tech. Report No. 9, RPN 203, Monmouth, New Jersey, U.S.A., 134 pp.. Little, C. G. (1957). The measurement of ionospheric absorption using extra-terrestrial radio waves, in Annals of the IGY, Vol. III, W.J. G. Beyon and G. M. Brown (Editors), Pergamon, London, UK, 207 pp. Little, C. G. and H. Leinbach (1959). The riometer – a device for the continuous measurement of ionospheric absorption, Proc. IRE, 47(2), 315-320. Lucas, D. L. and G. W. Haydon (1966). MUF-FOT predictions by electronic computers, National Bureau Of Standards (NBS) Report 6789, U. S. Department of Commerce, Boulder, Colorado, U.S.A., 62 p. Martyn, D. F. (1935). The propagation of medium radio waves in the ionosphere, Proc. Phys. Soc., 47 (2), 323-339. Pezzopane, M., Pietrella, M., Pignatelli, A., Zolesi, B., Cander, L.R., 2011. Assimilation of autoscaled data and regional and local ionospheric models as input sources for real-time 3-D International Reference Ionosphere modeling, Radio Science, 46, RS5009, doi:10.1029/2011RS004697. Phelps, A. V. and J. L. Pack (1959). Electron collision frequencies in nitrogen and in the lower ionosphere, Phys. Rev. Letter 3(7), 340-342. Piggott, W. R. (1953). The reflection and absorption of radio waves in the ionosphere, Proc. IEEE, Part III: Radio and Communication Engineering, 100, No. 64, pp. 61-72. Piggott, W. R., W. J. G. Beynon, G. M. Brown and C. G. Little (1957). The measurement of ionospheric absorption, in Annals of the IGY, Vol. III, Part II, Pergamon Press, London, UK, 173 pp. Rawer, K. (1976). Manual on ionospheric absorption measurements. Report UAG – 57, edited by K. Raver, published by World Data Center A for Solar-Terrestrial Physics, NOAA, Boulder, Colorado, USA, and printed by U.S. Department of Commerce National Oceanic and Atmospheric Administration Environmental Data Service, Asheville, Noth Carolina, USA, 202 pp. Schultz, L. D. and R. M. Gallet (1970). A survey and analysis of normal ionospheric absorption measurements obtained from pulse reflections, ESSA Professional Paper 4, U.S. Environmental Science Services Administration, Washington, U.S.A., 35 pp.. Schwentek, H. (1966). The determination of absorption in the ionosphere by recording the field strength of a distant transmitter, Ann. Geophys., 22, p. 276. Sen, H. K. and A. A. Wyller (1960). On the Generalization of the Appleton-Hartree Magnetoionic Formulas, J. Geophys. Res., 65 (12), 3931-3950. Settimi, A., M. Pezzopane, B. Zolesi, M. Pietrella, C. Bianchi, C. Scotto, E. Zuccheretti, J. Makris (2013a). Testing the IONORT-ISP system: a comparison between synthesized and measured oblique ionograms, Radio Science, 48, RDS20018 [13 pages], doi: 10.1002/rds.20018. Settimi, A., U. Sciacca and C. Bianchi (2013b). Scientific review on the Complex Eikonal, and research perspectives on the Ionospheric Ray-tracing and Absorption, Quaderni di Geofisica, 112, 29 pp.. Settimi, A., A. Ippolito, C. Cesaroni and C. Scotto (2013c). Scientific review on the ionospheric absorption and research perspectives of a Complex Eikonal model for one-layer Ionosphere, re-submitted for publication on Ann. Geophys. (16/10/2013). Stewart, F. G. (undated). Ionospheric Communications Enhanced Profile Analysis & Circuit (ICEPAC) Prediction Program, Technical Manual, 91 pp (http://elbert.its.bldrdoc.gov/hf_prop/manuals/icepac_tech_manual.pdf). Thrane, E. V. and W. R. Piggott (1966). The Collision Frequency in the D- and E-Regions of the ionosphere, J. Atmos. Terr. Phys., 28(8), 721-737. Whitehead, J. D. and T. B. Jones (1972). Distance attenuation effects in the absorption of vertically incident radio waves, J. Atmos. Terr. Phys., 34(1), 165-169.en
dc.description.obiettivoSpecifico2A. Fisica dell'alta atmosferaen
dc.description.journalTypeJCR Journalen
dc.description.fulltextpartially_openen
dc.relation.issn0273-1177en
dc.relation.eissn1879-1948en
dc.contributor.authorSettimi, A.en
dc.contributor.authorPietrella, M.en
dc.contributor.authorPezzopane, M.en
dc.contributor.authorZolesi, B.en
dc.contributor.authorBianchi, C.en
dc.contributor.authorScotto, C.en
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma2, Roma, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma2, Roma, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma2, Roma, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma2, Roma, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma2, Roma, Italia-
crisitem.author.orcid0000-0002-9487-2242-
crisitem.author.orcid0000-0001-9069-4090-
crisitem.author.orcid0000-0001-5800-2322-
crisitem.author.orcid0000-0002-0217-5379-
crisitem.author.orcid0000-0002-9437-6775-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent01. Atmosphere-
crisitem.classification.parent01. Atmosphere-
crisitem.classification.parent01. Atmosphere-
crisitem.classification.parent01. Atmosphere-
crisitem.classification.parent05. General-
crisitem.classification.parent05. General-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
Settimi et al., Adv. Space Res., 2014.docxMain article176.56 kBMicrosoft Word
Settimi et al., Adv. Space Res., 2014.pdfMain article200.94 kBAdobe PDFView/Open
Show simple item record

WEB OF SCIENCETM
Citations

6
checked on Feb 10, 2021

Page view(s) 1

20,847
checked on Apr 13, 2024

Download(s) 10

537
checked on Apr 13, 2024

Google ScholarTM

Check

Altmetric