Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/8862
Authors: Barta, V.* 
Scotto, C.* 
Pietrella, M.* 
Sgrigna, V.* 
Conti, L.* 
Satori, G.* 
Title: A statistical analysis on the relationship between thunderstorms and the sporadic E Layer over Rome
Journal: Astronomische Nachrichten 
Series/Report no.: 9/334 (2013)
Publisher: Wiley-VCH Verlag GmBH
Issue Date: 9-Nov-2013
DOI: 10.1002/asna.201211972
Keywords: sporadic E layer
superposed epoch analysis
atmospheric gravity waves
neutral atmosphere – ionosphere coupling
Subject Classification01. Atmosphere::01.02. Ionosphere::01.02.05. Wave propagation 
Abstract: Meteorological processes (cold fronts, mesoscale convective complexes, thunderstorms) in the troposphere can generate upward propagating waves in the neutral atmosphere affecting the behaviour of the ionosphere. One type of these waves are the internal atmospheric gravity waves (AGWs) which are often generated by thunderstorms. Davis & Johnson (2005) found in low pressure systems that a localized intensification of the sporadic E layer (Es) can be attributed to lightnings. To confirm this result, we have performed two different statistical analysis using the time series of the critical frequency (foEs), the virtual height of the sporadic E layer (h’Es), and meteorological observations (lightnings, Infrared maps) over the ionospheric station of Rome (41.9◦ N, 12.5◦ E). In the first statistical analysis, we separated the days of 2009 into two groups: stormy days and fair-weather days, then we studied the occurrence and the properties of the Es separately for the two different groups. No significant differences have been found. In the second case, a superposed epoch analysis (SEA) was used to study the behaviour of the critical frequency and virtual height 100 hours before and after the lightnings. The SEA shows a statistically significant decrease in the critical frequency after the time of the lightnings, which indicates a sudden decrease in the electron density of the sporadic E layer associated with lightnings.
Appears in Collections:Article published / in press

Files in This Item:
File Description SizeFormat Existing users please Login
published.pdfpaper published2.07 MBAdobe PDF
Show full item record

WEB OF SCIENCETM
Citations

6
checked on Feb 10, 2021

Page view(s) 20

302
checked on Apr 17, 2024

Download(s)

27
checked on Apr 17, 2024

Google ScholarTM

Check

Altmetric