Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/8848
DC FieldValueLanguage
dc.contributor.authorallBartiromo, A.; Dipartimento delle Scienze Biologiche, Università degli Studi di Napoli “Federico II” Napoli;Université de Lyon; Université Lyon1, Villeurbanne; CNRS, UMR 5276 Laboratoire de Géologie de Lyon. Herbiers de l’Université Claude Bernard Lyon, France;en
dc.contributor.authorallGuignard, G.; Université de Lyon; Université Lyon1, Villeurbanne; CNRS, UMR 5276 Laboratoire de Géologie de Lyon. Herbiers de l’Université Claude-Bernard Lyon 1, F-69622, Lyon, Franceen
dc.contributor.authorallBarone Lumaga, M. R.; Orto Botanico, Università degli Studi di Napoli “Federico II”, Via Foria, 223, 80139, Napoli, Italyen
dc.contributor.authorallBarattolo, F.; Dipartimento di Scienze della Terra, Università degli Studi di Napoli “Federico II”, Largo San Marcellino, 10, 80138, Napoli, Italyen
dc.contributor.authorallChiodini, G.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
dc.contributor.authorallAvino, R.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
dc.contributor.authorallGuerriero, G.; Dipartimento delle Scienze Biologiche, Università degli Studi di Napoli “Federico II”, Via Mezzocannone, 8, 80134, Napoli, Italyen
dc.contributor.authorallBarale, G.; Université de Lyon; Université Lyon1, Villeurbanne; CNRS, UMR 5276 Laboratoire de Géologie de Lyon. Herbiers de l’Université Claude-Bernard Lyon 1, F-69622, Lyon, Franceen
dc.date.accessioned2013-12-18T09:08:28Zen
dc.date.available2013-12-18T09:08:28Zen
dc.date.issued2013en
dc.identifier.urihttp://hdl.handle.net/2122/8848en
dc.description.abstractEpidermis micromorphology of in situ Erica arborea L. exposed for generations to long-term effect of volcanic gases in Pisciarelli and Solfatara di Pozzuoli areas have been studied by X-ray analyses, SEM and TEM observations. In particular, the aim of this study is to investigate the effects of volcanic gases on extant and possibly fossil plants. Plants of the same species living in a nearby control site were also studied for comparison. SEM coupled with EDX analysis was used to localize different elements within the leaves (mesophyll, cell wall and cuticle). After conventional and cryo preparation, SEM of mature leaves ascertained that the abaxial side is more serrate in fumigated leaves and hairs, epicuticular wax alterations have also been noted. Leaves experiencing chronic fumigation display stomata more sunken with respect to the epidermal surface. TEM of transverse and longitudinal sections of cuticle showed an outer A2 granular amorphous layer and external to a B1 fibrillous layer. Significant statistical variations of ultrastructural components of the cuticle revealed a response of E. arborea to this extreme environment. At the ultrastructural level, significant variations in thickness of the cell wall plus cuticle, cell wall and A2 layer among fumigated and non-fumigated leaves have been found. In the studied localities a positive correlation between atmospheric CO2 concentration and the thickness of A2 layer also exists. The results are of interest being applicable in the understanding of plant cuticle responses during periods of normal vs. volcanic activity.en
dc.language.isoEnglishen
dc.publisher.nameElsevier Science Limiteden
dc.relation.ispartofEnvironmental and experimental botanyen
dc.relation.ispartofseries/87 (2013)en
dc.subjectPhlegrean Fieldsen
dc.subjectErica arboreaen
dc.subjectVolcanic gasesen
dc.subjectEpidermisen
dc.subjectCuticle ultrastructureen
dc.titleThe cuticle micromorphology of in situ Erica arborea L. exposed to long-term volcanic gasesen
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber197– 206en
dc.subject.INGV03. Hydrosphere::03.02. Hydrology::03.02.04. Measurements and monitoringen
dc.subject.INGV03. Hydrosphere::03.04. Chemical and biological::03.04.04. Ecosystemsen
dc.subject.INGV04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistryen
dc.subject.INGV04. Solid Earth::04.08. Volcanology::04.08.01. Gasesen
dc.relation.referencesAbramoff, M.D., Magelhaes, P.J., Ram, S.J., 2004. Image processing with ImageJ. Biophotonics International 11, 36–42.Collinson, M.E., 1999. Scanning electron microscopy of megafossils and mesofossils. In: Jones, T.P., Rowe, N.P. (Eds.), Fossil Plants and Spores: Modern Techniques. The Geological Society, London, pp. 57–64. Courtillot, V., Renne, P.R., 2003. On the ages of flood basalt events. Comptes Rendus Geoscience 335, 113–140. Crang, F.E., Klomparens, K.L., 1988. Artifacts in Biological Electron Microscopy. Plenum Press, New York and London, 233 pp. De Kok, L.J., Durenkamp, M., Yang, L., Stulen, I., 2007. Atmospheric sulfur. In: Hawkesford, M.J., De Kok, L.J. (Eds.), Sulfur in Plants – An Ecological Perspective. Springer, Dordrecht, Netherlands, pp. 91–106. Del Gaudio, C., Aquino, I., Ricciardi, G.P., Ricco, C., Scandone, R., 2010. Unrest episodes at Campi Flegrei: A reconstruction of vertical ground movements during 1905–2009. Journal of Volcanology and Geothermal Research 195, 48–56. De Luca, P., Gambardella, R., Merola, A., 1979. Thermoacidophilic algae of North and Central America. Botanical Gazette 140, 418–427. Di Gennaro, A., 2002. I sistemi di terre della Campania. S.EL.CA., Firenze, 64 pp. Di Gennaro, A., Terribile, F., 1999. I suoli della Provincia di Napoli. S.EL.CA., Firenze, 63 pp. Domínguez, E., Heredia-Guerrero, J.A., Heredia, A., 2011. The biophysical design of plant cuticles: an overview. New Phytologist 189, 938–949. Falcon-Lang, H.J., Cantrill, D.J., 2002. Terrestrial paleoecology of the Cretaceous (Early Aptian) Cerro Negro Formation, South Shetlands Islands, Antarctica: a record of polar vegetation in a volcanic arc environment. Palaios 17, 491–506. Graham, L.E., 1993. Origin of Land Plants. Wiley, New York, NY, USA. Gratani, L., Varone, L., 2004. Leaf key traits of Erica arborea L., Erica multiflora L. and Rosmarinus officinalis L. co-occurring in the Mediterranean maquis. Flora 199, 58–69. Guignard, G., Popa, M.E., Barale, G., 2004. Ultrastructure of Early Jurassic fossil plant cuticles: Pachypteris gradinarui Popa. Tissue and Cell 36, 263–273. Gunther, R.T., 1897. The Phlegrean Fields. The Geographical Journal 10, 412–435. Haworth, M., 2006. Mesozoic Atmospheric Carbon Dioxide Concentrations from Fossil Plant Cuticles. University of Oxford, Oxford. Haworth, M., McElwain, J., 2008. Hot, dry, wet, cold or toxic? Revisiting the ecological significance of leaf and cuticular micromorphology. Palaeogeography Palaeoclimatology Palaeoecology 262, 79–90. Haworth, M., Gallagher, A., Elliott-Kingston, C., Raschi, A., Marandola, D., McElwain, J.C., 2010. Stomatal index responses of Agrostis canina to carbon dioxide and sulphur dioxide: implications for palaeo-[CO2] using the stomatal proxy. New Phytologist 188, 845–855. Haworth, M., Elliott-Kingston, C., McElwain, J.C., 2011. Stomatal control as a driver of plant evolution. Journal of Experimental Botany 62, 2419–2423. Herman, A.B., 2002. Late Early–Late Cretaceous floras of the North Pacific Region: florogenesis and early angiosperm invasion. Review of Palaeobotany and Palynology 122, 1–11. Hermes, D.A., Mattson, W.J., 1992. The dilemma of plants: to grow or defend. Quarterly Review of Biology 67, 283–335. Holloway, P.J., 1982. Structure and histochemistry of plant cuticular membranes: an overview. In: Cutler, D.F., Alvin, K.L., Price, C.E. (Eds.), The Plant Cuticle. Linnean Society, London, pp. 1–32. Hori, R.S., Fujiki, T., Inoue, E., Kimura, J.I., 2007. Platinum group element anomalies and bioevents in the Triassic-Jurassic deep-sea sediments of Panthalassa. Palaeogeography Palaeoclimatology Palaeoecology 244, 391–406. Hotes, S., Poschlod, P., Takahashi, H., Grootjans, A.P., Adema, E., 2004. Effects of tephra deposition on mire vegetation: a field experiment in Hokkaido, Japan. Journal of Ecology 92, 624–634. Lorenzini, G., Nali, C., 2005. Le piante e l’inquinamento dell’aria. Springer-Verlag, Italia, 247 pp. Lugardon, B., 1971. Contribution à la connaissance de la morphogénèse et de la structure des parois sporales chez les Filicinées isosporées. Unpublished Thesis. Toulouse University, France. Luteyn, J., 2002. Diversity, adaptation and endemism in neotropical Ericaceae: biogeographical patterns in the Vaccineae. Botanical Review 68, 55–87. Mather, T.A., Pyle, D.M., Oppenheimer, C., 2003. Tropospheric volcanic aerosol. In: Robock, A., Oppenheimer, C. (Eds.), Volcanism and the Earth’s Atmosphere, Geophysical Monograph, vol. 139. American Geophysical Union, Washington, DC, pp. 189–212. McElwain, J.C., Chaloner, W.G., 1996. The fossil cuticle as a skeletal record of environmental change. Palaios 11, 376–388. Paoletti, E., Nourrisson, I.G., Garrec, J.P., Raschi, A., 1998. Modifications of the leaf surface structures of Quercus ilex L. in open, naturally CO2-enriched environments. Plant, Cell & Environment 21, 1071–1075. Paoletti, E., Pfanz, H., Raschi, A., 2005. Pros and cons of CO2 springs as experimental sites. In: Omasa, K., Nouchi, I., De Kok, L.J. (Eds.), Plant Responses to Air Pollution and Global Change. Springer-Verlag, Tokyo, pp. 195–202. Payne, R., Blackford, J., 2008. Distal volcanic impacts on peatlands: palaeoecological evidence from Alaska. Quaternary Science Reviews 27, 2012–2030. Pe˜nuelas, J., Estiarte, M., 1998. Can elevated CO2 affect secondary metabolism and ecosystem function? Tree 13, 20–24. Pfanz, H., Vodnik, D., Wittmann, C., Aschan, G., Batic, F., Turk, B., Macek, I., 2007. Photosynthetic performance (CO2-compensation point, carboxylation efficiency, and net photosynthesis) of timothy grass (Phleum pratense L.) is affected by elevated carbon dioxide in post-volcanic mofette areas. Environmental and Experimental Botany 61, 41–48. Pinto, G., Ciniglia, C., Cascone, C., Pollio, A., 2007. Species composition of Cyanidiales assemblages in Pisciarelli (Campi Flegrei, Italy) and description of Galdieria phlegrea sp. nov. In: Seckbach, J. (Ed.), Algae and Cyanobacteria in Extreme Environments. Springer, Dordrecht, Netherlands, pp. 489–502. Reed, D.W., 1982. Wax alteration and extraction during electron microscopy preparation of leaf cuticles. In: Cutler, D.F., Alvin, K.L., Price, C.E. (Eds.), The plant cuticle. The Linnean Society of London, Academic Press, pp. 181–195. Retallack, G.J., 2002. Carbon dioxide and climate over the past 300 Myr. Philosophical Transactions of the Royal Society of London, Series A 360, 659–673. Rhode, R.A., Muller, R.A., 2005. Cycles in fossil diversity. Nature 434, 208–210. Riederer, M., 2006. Biology of the plant cuticle. In: Riederer, M., Müller, C. (Eds.), Biology of the Plant Cuticle. Blackwell Publishing Ltd., Kundli, pp. 1–10. Royer, D.L., 2001. Stomatal density and stomatal index as indicators of paleoatmospheric CO2 concentration. Review of Palaeobotany and Palynology 114, 1–28. Sant’Anna-Santos, B.F., Campos da Silva, L., Azevedo, A.A., de Araújo, J.M., Figueiredo Alves, E., Monteiro da Silva, E.A., Aguiar, R., 2006. Effects of simulated acid rain on the foliar micromorphology and anatomy of tree tropical species. Environmental and Experimental Botany 58, 158–168. Scaillet, B., 2008. Are volcanic gases serial killer? Science 319, 1628–1629. Scandone, R., D’Amato, J., Giacomelli, L., 2010. The relevance of the 1198 eruption of Solfatara in the Phlegraean Fields (Campi Flegrei) as revealed by medieval manuscripts and historical sources. Journal of Volcanology and Geothermal Research 189, 202–206. Sobolev, S.V., Sobolev, A.V., Kuzmin, D.V., Krivolutskaya, N.A., Petrunin, A.G., Arndt, N.T., Radko, V.A., Vasiliev, Y.R., 2011. Linking mantle plumes, large igneous provinces and environmental catastrophes. Nature 477, 312–316. Taylor, W.A., Taylor, T.N., Archangelsky, S., 1989. Comparative ultrastructure of fossil and living gymnosperm cuticles. Review of Palaeobotany and Palynology 59, 145–151. Tegelaar, E.W., Kerp, H., Visscher, H., Schenck, P.A., de Leeuw, J.W., 1991. Bias of the paleobotanical record as a consequence of variations in the chemical composition of higher vascular plant cuticles. Paleobiology 17, 133–144. Thordarson, T., Self, S., Óskarsson, N., Hulsebosch, T., 1996. Sulfur, chlorine, and fluorine degassing and atmospheric loading by the 1783–1784 AD Laki (Skaftár Fires) eruption in Iceland. Bulletin of Volcanology 58, 205–225. Tognetti, R., Minnocci, A., Pe˜nuelas, J., Raschi, A., Jones, M.B., 2000. Comparative field water relations of the three Mediterranean shrub species co-occurring at a natural CO2 vent. Environmental and Experimental Botany 51, 1135–1146. Vanhatalo, M., Huttunen, S., Bäck, J., 2001. Effects of elevated [CO2] and O3 on stomatal and surface wax characteristics in leaves of pubescent birch grown under field conditions. Tree 15, 304–313. Visscher, H., Looy, C.V., Collinson, M.E., Brinkhuis, H., van Konijnenburg-van Cittert, J.H.A., Kürschner, W.M., Sephton, M.A., 2004. Environmental mutagenesis during the end-Permian ecological crisis. Proceedings of the National Academy of Sciences of the United States of America 101, 12952–12956. Wang, Y., Guignard, G., Thévenard, F., Dilcher, D., Barale, G., Mosbrugger, V., Yang, X., Mei, S., 2005. Cuticular anatomy of Sphenobaiera huangii (Ginkgoales) from the Lower Jurassic of Hubei, China. American Journal of Botany 92, 709–721. Wignall, P.B., 2011. Lethal volcanism. Nature 477, 285–286. Winner, W.E., Mooney, H.A., 1980. Responses of Hawaiian plants to volcanic sulphur dioxide: stomatal behavior and foliar injury. Science 210, 789–791. Woodward, F.I., 1987. Stomatal numbers are sensitive to increases in CO2 from preindustrial levels. Nature 327, 617–618. Woodward, F.I., 1992. Predicting plant responses to global environmental change. New Phytologist 122, 239–251. Yang, X., Guignard, G., Thévenard, F., Wang, Y., Barale, G., 2009. Leaf cuticle ultrastructure of Pseudofrenelopsis dalatzensis (Chow et Tsao) Cao ex Zhou (Cheirolepidiaceae) from the Lower Cretaceous Dalazi Formation of Jilin, China. Review of Palaeobotany and Palynology 153, 8–18. Zobel, D., Antos, J., 1997. A decade of recovery of understory vegetation buried by volcanic tephra from Mount St Helens. Ecological Monographs 67, 317–344 Archangelsky, S., 1991. Ultrastructural studies in fossil plant cuticles. Current Science 61, 676–677. Archangelsky, S., Taylor, T.N., Kurmann, M.H., 1986. Ultrastructural studies of fossil plant cuticles: Ticoa harrisii from the early Cretaceous of Argentina. Botanical Journal of the Linnean Society 92, 101–116. Baker, E.A., 1982. Chemistry and morphology of plant epicuticular waxes. In: Cutler, D.J., Alvin, K.L., Price, C.E. (Eds.), The Plant Cuticle. Academy Press, London, pp. 139–165. Barthlott, W., Neinhuis, C., Cutler, D., Ditsch, F., Meusel, I., Theisen, I., Wilhelmi, H., 1998. Classification and terminology of plant epicuticular waxes. Botanical Journal of the Linnean Society 126, 237–260. Bartiromo, A., Guignard, G., Barone Lumaga, M.R., Barattolo, F., Chiodini, G., Avino, R., Guerriero, G., Barale, G., 2012. Influence of volcanic gases on the epidermis of Pinus halepensis Mill. in Campi Flegrei, Southern Italy: A possible tool for detecting volcanism in present and past floras. Journal of Volcanology and Geothermal Research 233–234, 1–17. Beck, C.B., 2010. An Introduction to Plant Structure and Development. Plant Anatomy for the Twenty-First Century. University Press, Cambridge, 384 pp. Beerling, D.J., McElwain, J.C., Osborne, C.P., 1998. Stomatal responses of the living fossil Ginkgo biloba L. to changes in atmospheric CO2 concentrations. Journal of Experimental Botany 49, 1603–1607. Beerling, D.J., Berner, R.A., 2002. Biogeochemical constraints on the Triassic-Jurassic boundary carbon cycle event. Global Biogeochemical Cycles 16, 101–113. Bergen, J.Y., 1903. The Macchie of the Neapolitan coast region. Botanical Gazette 35, 350–362. Berner, R.A., 1999. Atmospheric oxygen over Phanerozoic time. Proceedings of the National Academy of Sciences of the United States of America 96, 10955–10957. Berner, R.A., Beerling, D.J., 2007. Volcanic degassing necessary to produce a CaCO3 undersaturated ocean at the Triassic-Jurassic boundary. Palaeogeography Palaeoclimatology Palaeoecology 244, 368–373. Bettarini, I., Calderoni, G., Miglietta, F., Raschi, A., Ehleringer, J., 1995. Isotopic carbon discrimination and leaf nitrogen content of Erica arborea L. along a CO2 concentration gradient in a CO2 spring in Italy. Tree Physiology 15, 327–332. Bettarini, I., Vaccari, F.P., Miglietta, F., 1998. Elevated CO2 concentrations and stomatal density: observations from 17 plant species growing in a CO2 spring in central Italy. Global Change Biology 4, 17–22. Black, V.J., Unsworth, M.H., 1979. Resistance analysis of sulphur dioxide fluxes to Vicia faba. Nature 282, 17–22. Brown, K.A., 1982. Sulphur in the environment: a review. Environmental Pollution Series B 3, 47–80. Caliro, S., Chiodini, G., Moretti, R., Avino, R., Granieri, D., Russo, R., Fiebig, J., 2007. The origin of the fumaroles of La Solfatara (Campi Flegrei, South Italy). Geochimica et Cosmochimica Acta 71, 3040–3055. Carapezza, M., Gurrieri, S., Nuccio, P.M., Valenza, M., 1984. CO2 and H2S concentrations in the atmosphere at the Solfatara of Pozzuoli. Bulletin of Volcanology 47, 287–293. Chiodini, G., Caliro, S., Cardellini, C., Granieri, D., Avino, R., Baldini, A., Donnini, N., Minopoli, C., 2010. Long-term variations of the Campi Flegrei, Italy, volcanic system as revealed by the monitoring of hydrothermal activity. Journal of Geophysical Research 115, B03205. Chiodini, G., Avino, R., Caliro, Minopoli, C., 2011. Temperature and pressure gas geoindicators at the Solfatara fumaroles (Campi Flegrei). Annales de Geophysique, Italy 54, 151–160en
dc.description.obiettivoSpecifico1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attiveen
dc.description.obiettivoSpecifico2.4. TTC - Laboratori di geochimica dei fluidien
dc.description.obiettivoSpecifico4.5. Studi sul degassamento naturale e sui gas petroliferien
dc.description.journalTypeJCR Journalen
dc.description.fulltextrestricteden
dc.relation.issn0098-8472en
dc.relation.eissn1873-7307en
dc.contributor.authorBartiromo, A.en
dc.contributor.authorGuignard, G.en
dc.contributor.authorBarone Lumaga, M. R.en
dc.contributor.authorBarattolo, F.en
dc.contributor.authorChiodini, G.en
dc.contributor.authorAvino, R.en
dc.contributor.authorGuerriero, G.en
dc.contributor.authorBarale, G.en
dc.contributor.departmentDipartimento delle Scienze Biologiche, Università degli Studi di Napoli “Federico II” Napoli;Université de Lyon; Université Lyon1, Villeurbanne; CNRS, UMR 5276 Laboratoire de Géologie de Lyon. Herbiers de l’Université Claude Bernard Lyon, France;en
dc.contributor.departmentUniversité de Lyon; Université Lyon1, Villeurbanne; CNRS, UMR 5276 Laboratoire de Géologie de Lyon. Herbiers de l’Université Claude-Bernard Lyon 1, F-69622, Lyon, Franceen
dc.contributor.departmentOrto Botanico, Università degli Studi di Napoli “Federico II”, Via Foria, 223, 80139, Napoli, Italyen
dc.contributor.departmentDipartimento di Scienze della Terra, Università degli Studi di Napoli “Federico II”, Largo San Marcellino, 10, 80138, Napoli, Italyen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
dc.contributor.departmentDipartimento delle Scienze Biologiche, Università degli Studi di Napoli “Federico II”, Via Mezzocannone, 8, 80134, Napoli, Italyen
dc.contributor.departmentUniversité de Lyon; Université Lyon1, Villeurbanne; CNRS, UMR 5276 Laboratoire de Géologie de Lyon. Herbiers de l’Université Claude-Bernard Lyon 1, F-69622, Lyon, Franceen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptDipartimento delle Scienze Biologiche, Università degli Studi di Napoli “Federico II” ; Université Lyon 1, F-69622, Lyon; CNRS, UMR5276, Laboratoire de Géologie de Lyon. Herbiers de l'Université Claude-Bernard Lyon 1, France Dipartimento di Scienze della Terra, Università degli Studi di Napoli “Federico II”,-
crisitem.author.deptUniversité de Lyon; Université Lyon1, Villeurbanne; CNRS, UMR 5276 Laboratoire de Géologie de Lyon. Herbiers de l’Université Claude-Bernard Lyon 1, F-69622, Lyon, France-
crisitem.author.deptOrto Botanico, Università degli Studi di Napoli “Federico II”, Via Foria, 223, 80139, Napoli, Italy-
crisitem.author.deptDipartimento di Scienze della Terra, Università degli Studi di Napoli “Federico II”, Largo San Marcellino, 10, 80138, Napoli, Italy-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Bologna, Bologna, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OV, Napoli, Italia-
crisitem.author.deptDipartimento delle Scienze Biologiche, Università degli Studi di Napoli “Federico II”-
crisitem.author.deptUniversité de Lyon; Université Lyon1, Villeurbanne; CNRS, UMR 5276 Laboratoire de Géologie de Lyon. Herbiers de l’Université Claude-Bernard Lyon 1, F-69622, Lyon, France-
crisitem.author.orcid0000-0002-0628-8055-
crisitem.author.orcid0000-0003-2686-220X-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent03. Hydrosphere-
crisitem.classification.parent03. Hydrosphere-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
10 .pdf2.28 MBAdobe PDF
Show simple item record

Page view(s) 10

448
checked on Mar 27, 2024

Download(s) 50

91
checked on Mar 27, 2024

Google ScholarTM

Check