Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/8787
DC FieldValueLanguage
dc.contributor.authorallJolis, E. M.; Department of Earth Sciences, CEMPEG, Uppsala Universityen
dc.contributor.authorallFreda, C.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.authorallTroll, V. R.; Department of Earth Sciences, CEMPEG, Uppsala Universityen
dc.contributor.authorallDeegan, F. M.; Department of Geosciences, Swedish Museum of Natural Historyen
dc.contributor.authorallBlythe, L. S.; Department of Earth Sciences, CEMPEG, Uppsala University,en
dc.contributor.authorallMcLeod, C. L.; Department of Earth Sciences, Durham University,en
dc.contributor.authorallDavidson, J. P.; Department of Earth Sciences, Durham University,en
dc.date.accessioned2013-11-06T13:20:46Zen
dc.date.available2013-11-06T13:20:46Zen
dc.date.issued2013en
dc.identifier.urihttp://hdl.handle.net/2122/8787en
dc.description.abstractWe simulated the process of magma–carbonate interaction beneath Mt. Vesuvius in short duration piston-cylinder experiments under controlled magmatic conditions (from 0 to 300 s at 0.5 GPa and 1,200 C), using a Vesuvius shoshonite composition and upper crustal limestone and dolostone as starting materials. Backscattered electron images and chemical analysis (major and trace elements and Sr isotopes) of sequential experimental products allow us to identify the textural and chemical evolution of carbonated products during the assimilation process. We demonstrate that melt–carbonate interaction can be extremely fast (minutes), and results in dynamic contamination of the host melt with respect to Ca, Mg and87Sr/86Sr, coupled with intense CO2 vesiculation at the melt–carbonate interface. Binary mixing between carbon- ate and uncontaminated melt cannot explain the geochemical variations of the experimental charges in full and convection and diffusion likely also operated in the charges. Physical mixing and mingling driven by exsolving volatiles seems to be a key process to promote melt homogenisation. Our results reinforce hypotheses that magma–carbonate interaction is a relevant and ongoing process at Mt. Vesuvius and one that may operate not only on a geological, but on a human timescale.en
dc.description.sponsorshipSwedish Science Foundation (VR), the Centre for Natural Disaster Science (CNDS), Uppsala University (UU), the Royal Swedish Academy of Science (KVA), the Irish Research Council for Science (IRCSET), and the Istituto Nazionale di Geofisica e Vulcanologia (INGV)en
dc.language.isoEnglishen
dc.publisher.nameSpringer Verlag Germanyen
dc.relation.ispartofContributions to Mineralogy and Petrologyen
dc.relation.ispartofseries/166(2013)en
dc.subjectMt. Vesuviusen
dc.subjectMagma–carbonate interactionen
dc.subjectCO2 liberationen
dc.subjecttExperimental petrologyen
dc.titleExperimental simulation of magma–carbonate interaction beneath Mt. Vesuvius, Italyen
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber1335-1353en
dc.subject.INGV04. Solid Earth::04.08. Volcanology::04.08.03. Magmasen
dc.identifier.doi10.1007/s00410-013-0931-0en
dc.relation.referencesAuger E, Gasparini P, Virieux J, Zollo A (2001) Seismic evidence of an extended magmatic sill under Mt. Vesuvius. Science 294:1510–1512 Ayuso RA, De Vivo B, Rolandi G, Seal RR II, Paone A (1998) Geochemical and isotopic (Nd–Pb–Sr–O) variations bearing on the genesis of volcanic rocks from Vesuvius, Italy. J Volcanol Geotherm Res 82:53–78 Baker DR (1991) Interdiffusion of hydrous dacitic and rhyolitic melts and the efficacy of rhyolite contamination of dacitic enclaves. Contrib Mineral Petrol 106:462–473 Baker DR, Freda C, Brooker RA, Scarlato P (2005) Volatile diffusion in silicate melts and its effects on melt inclusions. Ann Geophys 28:699–717 Barberi F, Bizouard H, Clocchiatti R, Metrich N, Santacroce R, Sbrana A (1981) The Somma-Vesuvius magma chamber: a petrological and vulcanological approach. Bull Volcanol 44:295–315 Behrens H, Misiti V, Freda C, Vetere F, Botcharnikov RE, Scarlato P (2009) Solubility of H2O and CO2 in ultrapotassic melts at 1200 and 1250 C and pressure from 50 to 500 MPa. Am Mineral 94:105–120 Berrino G, Corrado G, Riccardi U (1998) Sea gravity on the Gulf of Naples: a contribution to delineating the structural pattern of the Vesuvian a´rea. J Volcanol Geotherm Res 82:139–150Blank JG, Brooker RA (1994) Experimental studies of carbon dioxide in silicate melts: solubility, speciation, and stable carbon isotope behaviour. In: Carroll MR, Holloway JR (ed) Volatiles in magmas. Rev Mineral 20:157–186 Blythe L, Misiti V, Masotta M, Taddeucci J, Freda C, Troll VR, Deegan FM, Jolis EM (2012) Viscosity controlled magma-carbonate interaction: a comparison of Mt. Vesuvius (Italy) and Mt. Merapi (Indonesia). Geophys Res Abstracts 14, EGU2012-4779-1 Botcharnikov R, Freise M, Holtz F, Behrens H (2005) Solubility of C–O–H mixtures in natural melts: new experimental data and implication range of recent models. Ann Geophys 48:633–646 Brocchini D, Principe C, Castradori D, Laurenzi MA, Gorla L (2001) Quaternary evolution of the southern sector of the Campanian Plain and early Somma-Vesuvius activity: insights from the Trecase 1 well. Mineral Petrol 73:67–91 Chadwick JP, Troll VR, Ginibre C, Morgan D, Gertisser R, Waight TE, Davidson JP (2007) Carbonate assimilation at Merapi volcano, Java, Indonesia: insights from crystal isotope stratig-raphy. J Petrol 48:1793–1812 Charlier BLA, Ginibre C, Morgan D, Nowell GM, Pearson DG, Davidson JP, Ottley CJ (2006) Methods for microsampling and high-precision analysis of strontium and rubidium at single crystal scale for petrological and geochronological applications. Chem Geol 232:114–133 Civetta L, Galati R, Santacroce R (1991) Magma mixing and convective compositional layering within the Vesuvius magma chamber. Bull Volcanol 53:287–300 Civetta L, D’Antonio M, De Lorenzo S, Di Renzo V, Gasparini P (2004) Thermal and geochemical constraints on the ‘deep’ magmatic structure of Mt. Vesuvius. J Volcanol Geotherm Res 133:1–12 D’Antonio M, Civetta L, Orsi G, Pappalardo L, Piochi M, Carandente A, De Vita S, Di Vito MA, Isaia R, Southon J (1999) The present state of the magmatic system of the Campi Flegrei caldera based on the reconstruction of its behaviour in the past 12 ka. J Volcanol Geotherm Res 91:247–268 Dallai L, Freda C, Gaeta M (2004) Oxygen isotope geochemistry of pyroclastic clinopyroxene monitors carbonate contributions to Roman-type ultrapotassic magmas. Contrib Mineral Petrol 148:247–263 Dallai L, Cioni R, Boschi C, D’Oriano C (2011) Carbonate-derived CO2 purging magma at depth: influence on the eruptive activity of Somma-Vesuvius, Italy. Earth Planet Sci Lett 310:84–95 De Campos CP, Dingwell DB, Perugini D, Civetta L, Fehr TK (2008) Heterogeneities in Magma Chambers: insights from the behavior of major and minor elements during mixing experiments with natural alkaline melts. Chem Geol 256:130–144 Deegan FM, Troll VR, Freda C, Misiti V, Chadwick JP, McLeod CL, Davidson JP (2010) Magma-carbonate interaction processes and associated CO2 release at Merapi volcano, Indonesia: insights from experimental petrology. J Petrol 51:1027–1051 Deegan FM, Troll VR, Freda C, Misiti V, Chadwick JP (2011) Fast and furious: crustal CO2 release at Merapi volcano, Indonesia. Geol Today 27:57–58 Del Moro A, Fulignati P, Marianelli P, Sbrana A (2001) Magma contamination by direct wall rock interaction: constraints from xenoliths from the wall of carbonate-hosted magma chamber (Vesuvius 1944 eruption). J Volc Geotherm Res 112:15–24 Del Pezzo E, Bianco F, De Siena L, Zollo A (2006) Small scale shallow attenuation structure at Mt. Vesuvius, Italy. Phys Earth Planet Inter 157:257–268 Di Matteo V, Mangiacapra A, Dingwell DB, Orsi G (2006) Water solubility and speciation in shoshonitic and latitic composition from Campi Flegrei Caldera (Italy). Chem Geol 229:113–12 Di Renzo V, Di Vito MA, Arienzo I, Carandente A, Civetta L, D’Antonio M, Giordano F, Orsi G, Tonarini S (2007) Magmatic History of Somma-Vesuvius on the basis of new geochemical and isotopic data from a deep borehole (Camaldoli della Torre). J Petrol 48:753–784 Dingwell DB (1996) Volcanic dilemma: flow or blow? Science 273:1054–1055 Dixon JE (1997) Degassing of alkali basalts. Am Mineral 82:368–378 Font L, Davidson JP, Pearson DG, Nowell GM, Jerram DA, Ottley CJ (2008) Sr and Pb isotope micro-analysis of plagioclase crystals from Skye lavas: an insight into open-system processes in a flood basalt province. J Petrol 49:1449–1471 Freda C, Gaeta M, Palladino DM, Trigila R (1997) The Villa Senni Eruption (Alban Hills, central Italy): the role of H2O and CO2 on the magma chamber evolution and on the eruptive scenario. J Volcanol Geotherm Res 78:103–120 Freda C, Baker D, Ottolini L (2001) Reduction of water loss from gold-palladium capsules during piston cylinder experiments by use of pyrophyllite powder. Am Mineral 86:234–237 Freda C, Gaeta M, Misiti V, Mollo S, Dolfi D, Scarlato P (2008) Magma-carbonate interaction: an experimental study on ultrapot-assic rocks from Alban Hills (Central Italy). Lithos 101:397–415 Freda C, Gaeta M, Giaccio B, Marra F, Palladino DM, Scarlato P, Sottili G (2011) CO2-driven large mafic explosive eruptions: the Pozzolane Rosse case study from the Colli Albani Volcanic District (Italy). Bull Volcanol 73:241–256 Fulignati P, Gioncada A, Sbrana A (1995) The magma chamber related hydrothermal system of Vesuvius, first mineralogical and fluid inclusion data on hydrothermalized subvolcanic and lavic samples from phreatomagmatic eruptions. Per Mineral 64:185–187 Fulignati P, Marianelli P, Sbrana A (1998) New insights on the thermometamorphic-metasomatic magma chamber shell of the 1944 eruption of Vesuvius. Acta Vulcanol 10:47–54 Fulignati P, Marianelli P, Santacroce R, Sbrana A (2004) Probing the Vesuvius magma chamber-host rock interface through xenoliths. Geol Mag 141:417–428 Fulignati P, Panichi C, Sbrana A, Caliro S, Gioncada A, Del Moro A (2005) Skarn formation at the walls of the 79AD magma chamber of Vesuvius (Italy): minerological and isotopic con-straints. N Jb Miner Abh 181:53–66 Gaeta M, Di Rocco T, Freda C (2009) Carbonate assimilation in open magmatic systems: the role of melt-bearing skarns and cumulate forming processes. J Petrol 50:361–385 Ghiorso MS, Hirschmann MM, Sack RO (1994) New software models-thermodynamics of magmatic systems. EOS Trans Am Geophys Union 75:574–576 Gilg HA, Lima A, Somma R, Belkin HE, De Vivo B, Ayuso RA (2001) Isotope geochemistry and fluid inclusions study of skarns from Vesuvius. Mineral Petrol 73:145–176 Goff F, Love SP, Warren RG, Counce D, Obenholzner J, Siebe C, Schmidt SC (2001) Passive infrared remote sensing evidence for large, intermittent CO2 emissions at Popcate´petl volcano, Mexico. Chem Geol 177:133–156 Holloway JR (1976) Fluids in the evolution of granitic magmas: consequences of finite CO2 solubility. Geol Soc Am Bull 87:1513–1518 Holloway JR, Blank JG (1994) Application of experimental results to C–O–H species in natural melts. In: Carroll MR, Holloway JR (eds) Volatiles in magmas. Rev Mineral 30:187–230 Iacono-Marziano G, Gaillard F, Pichavant M (2008) Limestone assimilation by basaltic magmas: an experimental re-assessment and application to Italian volcanoes. Contrib Mineral Petrol 155:719–738 Iacono-Marziano G, Gaillard F, Scaillet B, Pichavant M, Chiodini G (2009) Role of non-mantle CO2 in the dynamics of volcano degassing: the Mount Vesuvius example. Geology 37:319–322 Iannace A, Capuano M, Galluccio L (2011) Dolomites and dolom-ites’’ in Mesozoic platform carbonates of the Southern Apen-nines: geometric distribution, petrography and geochemistry. Palaeogeogr Palaeoclimatol Palaeoecol 310:324–339 Iezzi G, Mollo S, Ventura G, Cavallo A, Romano C (2008) Experimental solidification of anhydrous latitic and trachytic melts at different cooling rates: the role of nucleation kinetics. Chem Geol 253:91–101 Lesher CE, Hervig RL, Tinker D (1996) Self diffusion of network formers (silicon and oxygen) in naturally occurring basaltic liquid. Geochim Cosmochim Acta 60:405–413 Lesne P, Scaillet B, Pichavant M, Beny J-M (2010) The carbon dioxide solubility in alkali basalts: an experimental study. Contrib Mineral Petrol 162:133–151 Liang Y, Richter FM, Davis AM, Watson EB (1996) Diffusion in silicate melts I. Self diffusion in CaO–Al2O3–SiO2 at 1500 C and 1 Gpa. Geochim Cosmochim Acta 60:4353–4367 Metz P, Milke R (2012) Mechanism and kinetics of forsterite formation in metamorphic siliceous dolomites: finding form a rock-sample experiment. Eur J Mineral 24:59–72 Mollo S, Gaeta M, Freda C, Di Rocco T, Misiti V, Scarlato P (2010) Carbonate assimilation in magmas: a reappraisal based on experimental petrology. Lithos 114:503–514 Mollo S, Heap MJ, Iezzi G, Hess K-U, Scarlato P, Dingwell D (2012) Volcanic edifice weakening via decarbonation: a self-limiting processes? Geophys Res Lett 39:L15307. doi:10.1029/2012 GL052613 Moore G (2008) Interpreting H2O and CO2 contents in melt inclusions: constraints from solubility experiments and model-ing. Rev Mineral Geochem 69:333–361 Orsi G, De Vita S, Di Vito M (1996) The restless, resurgent Campi Flegrei nested caldera(Italy): constraints on its evolution and configuration. J Volcanol Geotherm Res 74:179–214 Paone A (2006) The geochemical evolution of the Mt. Somma-Vesuvius volcano. Mineral Petrol 87:53–80 Papale P, Moretti R, Barbato D (2006) The compositional dependence of the saturation surface of H2O ? CO2 fluids in silicate melts. Chem Geol 229:78–95 Peccerillo A (1999) Multiple metasomatism in central-southern Italy: geochemical effects, timing and geodynamic implications. Geology 27:315–318 Peccerillo A (2005) Plio-quaternary volcanism in Italy. Petrology, geochemistry, geodynamics. Springer, Berlin, pp 133–135 Perugini D, Petrelli M, Poli G (2006) Diffusive fractionation of trace elements by chaotic mixing of magmas. Earth Planet Sci Lett 243:669–680 Perugini D, De Campos CP, Dingwell DB, Petrelli M, Poli G (2008) Trace element mobility during magma mixing: preliminary experimental results. Chem Geol 256:146–157 Piochi M, Ayuso RA, De Vivo B, Somma R (2006) Crustal contamination and crystal entrapment during polybaric magma evolution at Mt. Somma-Vesuvius volcano, Italy: geochemical and Sr isotope evidence. Lithos 86:303–329 Rittmann A (1933) Evolution and differentiation des Somma-Vesuvius-magmas. Zs. Vulkanologie 15:8–94 Rolandi G, Munno R, Postiglione I (2004) The A.D. 472 eruption of the Somma volcano. J Volcanol Geotherm Res 129: 291–319 Schaaf P, Stimac J, Siebe C, Macias JL (2005) Geochemical evidence for mantle origin and crustal processes in volcanic rocks from Popocate´petl and surrounding monogenetic volcanoes, Central Mexico. J Petrol 46:1243–1282 Somma R, Ayuso RA, De Vivo B, Rolandi G (2001) Major, trace element and isotope geochemistry (Sr-Nd-Pb) of interplinian magmas from Mt. Somma-Vesuvius (Southern Italy). Mineral Petrol 73:121–143 Thirlwall MF (1991) Long-term reproducibility of multicollector Sr an Nd isotope ratio analysis. Chem Geol 94:85–104 Troll VR, Hilton DR, Jolis EM, Chadwick JP, Blythe LS, Deegan FM, Schwarzkopf LM, Zimmer M (2012a) Crustal CO2 liberation during the 2006 eruption and earthquake events at Merapi volcano, Indonesia. Geophys Res Lett 39:L11302. doi:10.1029/ 2012GL051307 Troll VR, Deegan FM, Jolis EM, Harris C, Chadwick JP, Gertisser R, Schwarzkopf LM, Borisova AY, Bindeman IN, Sumarti S, Preece K (2012b) Magmatic differentiation processes at Merapi Volcano: inclusions petrology and oxygen isotopes. J Volcanol Res (in press). doi:10.16/j.jvolgeores.2012.11001 Turi B, Taylor HP Jr (1976) Oxygen isotope studies of potassic volcanic rocks of the Roman Province, Central Italy. Contrib Mineral Petrol 55:1–31 Vetere F, Botcharnikov RE, Holtz F, Behrens H, De Rosa R (2011) Solubility of H2O and CO2 in shoshonitic melts at 1250 C and pressures from 50 to 400 MPa: implications from Campi Flegrei magmatic systems. J Volcanol Geotherm Res 202:251–261 Watson BE (1982) Basalt contamination by continental crust: some experiments and models. Contrib Mineral Petrol 80:73–87 Watson EB, Jurewicz SR (1984) Behavior of alkalies diffusive of granitic xenoliths with basaltic magma. J Geol 92:121–131 Watson BE, Sneeringer MA, Ross A (1982) Diffusion of dissolved carbonate in magmas: experimental results and applications. Earth Planet Sci Lett 61:356–358 Werner C, Brantley S (2003) CO2 emissions from the Yellowstone volcanic system. Geochem Geophys Geosyst 4(7):1061. doi:10. 1029/2002GC000473 Zhang Y (1993) A modified effective binary diffusion model. J Geophys Res 98:11901–11920 Zhang Y (2010) Diffusion in minerals and melts: theoretical background. In Zhang Y, Cherniak DJ (eds) Rev Mineral Geochem 72:5–59 Zhang Y, Stolper EM (1991) Water diffusion in a basaltic melt. Nature 351:306–309 Zollo A, Gasparini P, Virieux J, Le Meur H, De Natale G, Biella G, Boschi E, Capuano P, De Franco R, Dell’Aversana P, De Matteis R, Guerra I, Iannaccone G, Mirabile L, Vilardo G (1996) Seismic evidence for a low-velocity zone in the upper crust beneath Mount Vesuvius. Science 274:592–594 Zollo A, Gasparini P, Virieux J, Biella G, Boschi E, Capuano P, De Franco R, Dell’Aversana P, De Matteis R, De Natale G, Iannaccone G, Guerra I, Le Meur H, Mirabile L (1998) An image of Mt. Vesuvius obtained by 2D seismic tomography. J Volcanol Geotherm Res 82:161–173 Zollo A, Marzocchi W, Capuano P, Lomax A, Iannaccone G (2002) Space and time behavior of seismic activity at Mt. Vesuvius volcano, Southern Italy. Bull Seismol Soc Am 92:625–640en
dc.description.obiettivoSpecifico2.3. TTC - Laboratori di chimica e fisica delle rocceen
dc.description.journalTypeJCR Journalen
dc.description.fulltextrestricteden
dc.relation.issn0010-7999en
dc.relation.eissn1432-0967en
dc.contributor.authorJolis, E. M.en
dc.contributor.authorFreda, C.en
dc.contributor.authorTroll, V. R.en
dc.contributor.authorDeegan, F. M.en
dc.contributor.authorBlythe, L. S.en
dc.contributor.authorMcLeod, C. L.en
dc.contributor.authorDavidson, J. P.en
dc.contributor.departmentDepartment of Earth Sciences, CEMPEG, Uppsala Universityen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.departmentDepartment of Earth Sciences, CEMPEG, Uppsala Universityen
dc.contributor.departmentDepartment of Geosciences, Swedish Museum of Natural Historyen
dc.contributor.departmentDepartment of Earth Sciences, CEMPEG, Uppsala University,en
dc.contributor.departmentDepartment of Earth Sciences, Durham University,en
dc.contributor.departmentDepartment of Earth Sciences, Durham University,en
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma1, Roma, Italia-
crisitem.author.deptUppsala University-
crisitem.author.deptDepartment of Geosciences, Swedish Museum of Natural History-
crisitem.author.deptDepartment of Earth Sciences, CEMPEG, Uppsala University,-
crisitem.author.deptDepartment of Earth Sciences, Durham University,-
crisitem.author.deptDEPARTMENT OF EARTH SCIENCES, THE UNIVERSITY OF DURHAM, DURHAM DH1 3LE, UK-
crisitem.author.orcid0000-0003-1804-0847-
crisitem.author.orcid0000-0002-2320-8096-
crisitem.author.orcid0000-0003-1891-3396-
crisitem.author.orcid0000-0002-9065-9225-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
Jolis et al 2013.PDFmain article1.91 MBAdobe PDF
Show simple item record

WEB OF SCIENCETM
Citations

32
checked on Feb 10, 2021

Page view(s) 50

215
checked on Apr 24, 2024

Download(s)

31
checked on Apr 24, 2024

Google ScholarTM

Check

Altmetric