Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/8773
DC FieldValueLanguage
dc.contributor.authorallGanci, G.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Catania, Catania, Italiaen
dc.contributor.authorallJames, M. R.en
dc.contributor.authorallCalvari, S.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Catania, Catania, Italiaen
dc.contributor.authorallDel Negro, C.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Catania, Catania, Italiaen
dc.date.accessioned2013-10-11T08:11:52Zen
dc.date.available2013-10-11T08:11:52Zen
dc.date.issued2013en
dc.identifier.urihttp://hdl.handle.net/2122/8773en
dc.description.abstractDuring effusive eruptions, thermal satellite monitoring has proved well suited to map the thermal flux from lava flows. However, during lava fountaining events, thermal contributions from active flows and from the fountain itself cannot be separated in low resolution satellite data. Here using photogrammetry and atmospheric modeling techniques, we compare radiance estimates from long-range ground-based thermal camera data (from which the fountain can be excluded) with those from SEVIRI satellite images for a fountaining event at Mount Etna (12 August 2011). The radiant heat flux determined from the ground-based camera showed similar behavior to values retrieved from Spinning Enhanced Visible and Infrared Imager (SEVIRI); thus the SEVIRI signal is interpreted to be dominated by the lava flows, with minimal contribution from the fountain. Furthermore, by modeling the cooling phase of each pixel inundated by lava, the mean thickness and lava volume (~2.4 × 106 m3) derived from camera images are comparable with those calculated from SEVIRI (~2.8 × 106 m3).en
dc.language.isoEnglishen
dc.publisher.nameAmerican Geophysical Unionen
dc.relation.ispartofGeophysical Research Lettersen
dc.relation.ispartofseries19/40 (2013)en
dc.subjectEtnaen
dc.subjectsatelliteen
dc.subjectthermal monitoringen
dc.subjectSEVIRIen
dc.titleSeparating the thermal fingerprints of lava flows and simultaneous lava fountaining using ground-based thermal camera and SEVIRI measurementsen
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber5058–5063en
dc.subject.INGV04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoringen
dc.identifier.doi10.1002/grl.50983en
dc.relation.referencesAksakal, S. K. (2013), Geometric accuracy investigations of SEVIRI high resolution visible (HRV) level 1.5 Imagery, Remote Sens., 5, 2475–2491, doi:10.3390/rs5052475. Bonaccorso,A.,A. Bonforte, S. Calvari, C. DelNegro,G. DiGrazia, G.Ganci, M. Neri, A. Vicari, and E. Boschi (2011), The initial phases of the 2008–2009 Mt. Etna eruptiona multi-disciplinary approach for hazard assessment, J. Geophys. Res., 116, B03203, doi:10.1029/2010JB007906. Bonaccorso, A., S. Calvari, G. Currenti, C. Del Negro, G. Ganci, A. Linde, R. Napoli, S. Sacks, and A. Sicali (2013), From source to surface: dynamics of Etna’s lava fountains investigated by continuous strain, magnetic, ground and satellite thermal data, Bull. Volcanol., 75, 690, doi:10.1007/ s00445-013-0690-9. Calvari, S., L. Lodato, A. Steffke, A. Cristaldi, A. J. L. Harris, L. Spampinato, and E. Boschi (2010), The 2007 Stromboli eruption: Event chronology and effusion rates using thermal infrared data, J. Geophys. Res., 115, B04201, doi:10.1029/2009JB006478. Calvari, S., G. G. Salerno, L. Spampinato, M. Gouhier, A. La Spina, E. Pecora, A. J. L. Harris, P. Labazuy, E. Biale, and E. Boschi (2011), An unloading foam model to constrain Etna’s 11–13 January 2011 lava fountaining episode, J. Geophys. Res., 116, B11207, doi:10.1029/ 2011JB008407. Cappello, A., G. Bilotta, M. Neri, and C. Del Negro (2013), Probabilistic modelling of future volcanic eruptions at Mount Etna, J. Geophys. Res. Solid Earth, 118, 1925–1935, doi:10.1002/jgrb.50190. Coppola, D., M. R. James, T. Staudacher, and C. Cigolini (2010), A comparison of field- and satellite-derived thermal flux at Piton de la Fournaise: Implications for the calculation of lava discharge rate, Bull. Volcanol., 72, 341–356, doi:10.1007/s00445-009-0320-8. Ganci,G., A. Vicari,S.Bonfiglio, G. Gallo, and C. Del Negro (2011a), A textonbased cloud detection algorithm for MSG-SEVIRI multispectral images, Geomatics Nat. Hazards Risk, 2, 1–12, doi:10.1080/19475705.2011.578263. Ganci, G., A. Vicari, L. Fortuna, and C. Del Negro (2011b), The HOTSAT volcano monitoring system based on a combined use of SEVIRI and MODIS multispectral data, Ann. Geophys., 54(5), 544–550, doi:10.4401/ag-5338. Ganci, G., A. J. L. Harris, C. Del Negro, Y. Guéhenneux, A. Cappello, P. Labazuy, S. Calvari, and M. Gouhier (2012a), A year of fountaining at Etna: Volumes from SEVIRI, Geophys. Res. Lett., 39, L06305, doi:10.1029/2012GL051026. Ganci, G., A. Vicari, A. Cappello, and C. Del Negro (2012b), An emergent strategy for volcano hazard assessment: From thermal satellite monitoring to lava flow modelling, Remote Sens. Environ., 119, 197–207, doi:10.1016/j.rse.2011.12.021. Harris, A. J. L., J. Dehn, M. R. Patrick, S. Calvari, M. Ripepe, and L. Lodato (2005), Lava effusion rates from hand-held thermal infrared imagery: An example from the June 2003 effusive activity at Stromboli, Bull. Volcanol., 68, 107–117. Hirn, B., C. Di Bartola, G. Laneve, E. Cadau, and F. Ferrucci (2008), SEVIRI onboard Meteosat Second Generation, and the quantitative monitoring of effusive volcanoes in Europe and Africa, in IEEE International Geoscience and Remote Sensing Symposium (IGARSS 2008), pp. 374–377, Inst. of Electr. and Electron. Eng., New York. James, M. R., S. Robson, H. Pinkerton, and M. Ball (2006), Oblique photogrammetry with visible and thermal images of active lava flows, Bull. Volcanol., 69, 105–108. James, M. R., H. Pinkerton, and Robson, S. (2007), Image-based measurement of flux variation in distal regions of active lava flows, Geochem. Geophys. Geosys., 8, Q03006, doi:10.1029/2006GC001448. Lee, R. J., M. S. Ramsey, and P. L. King (2013), Development of a novel laboratory technique for high temperature thermal emission spectroscopy of silicate melts, J. Geophys. Res. Atmos., 118, 1525–1535, doi:10.1002/ jgrb.50197. Ramsey, M. S., and A. J. L. Harris (2013), Volcanology 2020: How will thermal remote sensing of volcanic surface activity evolve over next decade?, J. Volcanol. Geoth. Res., 249, 217–233. Vicari, A., G. Ganci, B. Behncke, A. Cappello, M. Neri, and C. Del Negro (2011), Near-real-time forecasting of lava low hazards during the 12–13 January 2011 Etna eruption, Geophys. Res. Lett., 38, L13317, doi:10.1029/ 2011GL047545. Wolff, J. A., and J. M. Sumner (2000), Lava fountains and their products, in Encyclopedia of Volcanoes, edited by H. Sigurdsson, B. F. Houghton, S. R. Mcnutt, H. Rymer, and J. Stix, Academic Press, San Diego, Calif., pp. 321–329. Wooster, M. J., B. Zhukov, and D. Oertel (2003), Fire radiative energy for quantitative study of biomass burning: Derivation from the BIRD experimental satellite and comparison to MODIS fire products, Remote Sens. Environ., 86, 83–107. Wright, R., H. Garbeil, and A. J. L. Harris (2008), Using infrared satellite data to drive a thermo-rheological/stochastic lava flow emplacement model: A method for near-real-time volcanic hazard assessment, Geophys. Res. Lett., 35, L19307, doi:10.1029/2008GL035228.en
dc.description.obiettivoSpecifico1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcanien
dc.description.journalTypeJCR Journalen
dc.description.fulltextrestricteden
dc.relation.issn0094-8276en
dc.relation.eissn1944-8007en
dc.contributor.authorGanci, G.en
dc.contributor.authorJames, M. R.en
dc.contributor.authorCalvari, S.en
dc.contributor.authorDel Negro, C.en
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Catania, Catania, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Catania, Catania, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Catania, Catania, Italiaen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OE, Catania, Italia-
crisitem.author.deptEnvironmental Science Department, Institute of Environmental and Natural Sciences, Lancaster University, Lancaster, United Kingdom-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OE, Catania, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OE, Catania, Italia-
crisitem.author.orcid0000-0002-9914-1107-
crisitem.author.orcid0000-0001-8189-5499-
crisitem.author.orcid0000-0001-5734-9025-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
Ganci et al 2013.pdfmain text 1.3 MBAdobe PDF
Show simple item record

WEB OF SCIENCETM
Citations 50

23
checked on Feb 10, 2021

Page view(s)

108
checked on Apr 24, 2024

Download(s)

26
checked on Apr 24, 2024

Google ScholarTM

Check

Altmetric