Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/8772
DC FieldValueLanguage
dc.contributor.authorallDel Gaudio, P.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.authorallVentura, G.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.authorallTaddeucci, J.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.date.accessioned2013-10-11T08:06:50Zen
dc.date.available2013-10-11T08:06:50Zen
dc.date.issued2013-08-02en
dc.identifier.urihttp://hdl.handle.net/2122/8772en
dc.description.abstractWe investigate the effect of crystal size on the rheology of basaltic magmas by means of a rheometer and suspensions of silicon oil with natural magmatic crystals of variable size (from 63 to 0.5 mm) and volume fraction fi (from 0.03 to 0.6). At constant fi, finer suspensions display higher viscosities than coarser ones. Shear thinning (flow index n < 1) occurs at fi > 0.1–0.2 and is more pronounced (stronger departure from the Newtonian behavior) in finer suspensions. Maximum packing and average crystal size displays a nonlinear, positive correlation, while yield stress develops at fi > 0.2–0.3 irrespective of the crystal size. We incorporate our results into physical models for flow of lava and show that, with respect to lava flows containing coarser crystals, those with smaller crystals are expected to: 1) flow at lower velocity, 2) have a lower velocity gradient, and 3) be more prone to develop a region of plug flow. Our experimental results explain the observation that phenocryst-bearing and microlite-bearing lavas at Etna volcano (Italy) show smooth pahoehoe and rough aa’ surfaces, respectively.en
dc.description.sponsorshipFIRB-MIUR ‘‘Research and Development of New Technologies for Protection and Defense of Territory from Natural Risks’’en
dc.language.isoEnglishen
dc.publisher.nameAmerican Geophysical Unionen
dc.relation.ispartofGeochemistry, Geophysics, Geosystemsen
dc.relation.ispartofseries8/14 (2013)en
dc.subjectrheologyen
dc.subjectmagmatic suspensionsen
dc.subjectanalogue modelen
dc.subjectlava floen
dc.titleThe effect of particle size on the rheology of liquid-solid mixtures with application to lava flows: Results from analogue experimentsen
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber2661-2669en
dc.subject.INGV04. Solid Earth::04.08. Volcanology::04.08.03. Magmasen
dc.identifier.doi10.1002/ggge.20172en
dc.relation.referencesAncey, C., and H. Jorrot (2001), Yield stress for particle suspensions within a clay dispersion, J. Rheol., 45, 297–319. Caricchi, L., L. Burlini, P. Ulmer, T. Gerya, M. Vassalli, and P. Papale (2007), Non-Newtonian rheology of crystalbearing magmas and implications for magma ascent dynamics, Earth Planet. Sci. Lett., 264, 402–419, doi:10.1016/ j.epsl.2007.09.032. Castruccio, A., A. C. Rust, and R. S. J. Sparks (2010), Rheology and flow of crystal-bearing lavas: Insights from analogue gravity currents, Earth Planet. Sci. Lett., 297, 471– 480, doi:10.1016/j.epsl.2010.06.051Chang, C., and R. L. Powell (1993), Dynamic simulation of bimodal suspensions of hydrodynamically interacting spherical particles, J. Fluid Mech., 253, 173–209. Chong, J. S., E. B. Christiansen, and A. D. Baer (1971), Rheology of concentrated suspensions, J. App. Polym. Sci., 15, 2007–2021. Cimarelli, C., A. Costa, S. Mueller, and H. M. Mader (2011), Rheology of magmas with bimodal crystal size and shape distributions: Insights from analog experiments, Geochem. Geophys. Geosyst., 12, Q07024, doi:10.1029/2011GC003606. Cox, M. R., and Budhu, B. (2008), A practical approach to grain shape quantification, Eng. Geol., 96, 1–16. Deubelbeiss, Y., B. J. P. Kaus, J. A. D. Connolly, and L. Caricchi (2011), Potential causes for the non-Newtonian rheology of crystal-bearing magmas, Geochem. Geophys. Geosyst., 12, Q05007, doi:10.1029/2010GC003485. Dragoni, M., M. Bonafede, and E. Boschi (1986), Downslope flow models of a Bingham liquid: Implications for lava flows, J. Volcanol. Geothermal Res., 30, 305–325. Farris, R. J. (1968), Prediction of the viscosity of multimodal suspensions from unimodal viscosity data, Trans. Soc. Rheol., 12, 281–301. Giordano, D., and D. B. Dingwell (2003), Viscosity of Etna Basalt: Implications for Plinian-style basaltic eruptions, Bull. Volcanol., 65, 8–14. Herschel, W. H., and R. Bulkley (1926), Konsistenzmessungen von Gummi-Benzollösungen, Kolloid Z., 39, 291–300, doi:10.1007/BF01432034. Hoover, S., K. V. Cashman, and M. Manga (2001), The yield strength of subliquidus basalts: Experimental results, J. Volcanol. Geothermal Res., 107, 1–18. Hughes, J. W., J. E. Guest, and A. M. Duncan (1990), Changing styles of effusive eruptions on Mount Etna since A.D. 1600, in Magma Transport and Storage, edited by M. P. Ryan, pp. 385–406, John Wiley, New York, NY. Iezzi, G., and G. Ventura (2002). Crystal fabric evolution in lava flows: Results from numerical simulations, Earth Planet. Sci. Lett., 200, 33–46. Ildefonse, B., P. Launeau, J. L. Bouchez, and A. Fernandez (1992), Effect of mechanical interactions on the development of shape preferred orientations: A two-dimensional experimental approach, J. Struct. Geol., 14, 73–83. Ishibashi, H., and H. Sato (2007), Viscosity measurements of subliquidus magmas: Alkali olivine basalt from the Higashi- Matsuura district, Southwest Japan, J. Volcanol. Geothermal Res., 160, 223–238, doi:10.1016/j.jvolgeores.2006.10.001. Kawabata, H., D. Nishiura, H. Sakaguchi, and Y. Tatsumi (2013), Self-organized domain microstructures in a platelike particle suspension subjected to rapid simple shear, Rheologica Acta, 52, 1–21. Krieger, I. M. and T.J. Dougherty (1959), A mechanism for non-Newtonian flow in suspensions of rigid spheres, Trans. Soc. Rheol., 3, 137–152. Lejeune, A., and P. Richet (1995), Rheology of crystalbearing silicate melts : An experimental study at high viscosity, J. Geophys. Res., 100, 4215–4229, doi :10.1029/ 94JB02985. Marsh, B. D. (1981), On the crystallinity, probability of occurrence, and rheology of lava and magma, Contrib. Mineral. Petrol., 78, 85–98. McBirney, A. R., and T. Murase, (1984), Rheological properties of magmas, Ann. Rev. Earth Planet. Sci., 12, 337–357, doi:10.1146/annurev.ea.12.050184.002005. Mezger, G. T. (2006), The Rheology Handbook: For Users of Rotational and Oscillatory Rheometers, 290 pp., Vincentz Network GmbH & Co KG, Hannover, Germany. Mueller, S., E. W. Llewellin, and H. M. Mader (2010), The rheology of suspensions of solid particles, Proc. R. Soc. A, 466, 1471–2946, doi:10.1098/rspa.2009.0445. Qi, F., and R. I. Tanner (2012), Random close packing and relative viscosity of multimodal suspensions. Rheol. Acta, 51, 289–302, doi:10.1007/s00397-011-0597-3. Saar, M. O., M. Manga, K. Cashman, and S. Fremouw (2001), Numerical models of the onset of yield strength in crystalmelt suspensions, Earth Planet. Sci. Lett., 187, 367–379. Sato, H. (2005), Viscosity measurement of subliquidus magmas: 1707 basalt of Fuji volcano, J. Mineral. Petrol. Sci., 100, 133– 142. Scotto di Santolo, A., A. M. Pellegrino, and A. Evangelista (2010), Experimental study on the rheological behaviour of debris flow, Nat. Hazards Earth Syst. Sci., 10, 2507–2514. Shi, Y., and Y. Zhang (2008), Simulation of random packing of spherical particles with different size distributions. Appl. Phys A, 92, 621–626, doi:10.1007/s00339-008-4547-6. Stickel, J. J., and R. L. Powell (2005), Fluid mechanics and rheology of dense suspensions, Ann. Rev. Fluid Mech., 37, 129–149, doi:10.1146/annurev.fluid.36.050802.122132. Soule, S. A., and K. V. Cashman (2005), Shear rate dependence of the pahoehoe to ‘a‘a transition: Analog experiments, Geology, 33, 361–364. Taddeucci, J., and D. M. Palladino (2002), Particle sizedensity relationships in pyroclastic deposits: Inferences for emplacement processes, Bull. Volcanol., 64, 273–284, doi:10.1007/s00445-002-0205-6. Thies, M., and J. Deubener (2002), Onset of non-Newtonian flow of foamed soda-lime-silica glasses, Glass Technol., 43– 45. Tordesillas, A., J. Zhang, and R. Behringer (2009), Buckling force chains in dense granular assemblies: Physical and numerical experiments. Geomech. Geoeng., 4, 3-16, doi:10.1080/17486020902767347. Vona, A., C. Romano, D. B. Dingwell, and D. Giordano (2011), The rheology of crystal-bearing basaltic magmas from Stromboli and Etna, Geochim. Cosmochim. Acta, 75, 3214–3236, doi:10.1016/j.gca.2011.03.031. Vetere, F., H. Behrens, F. Holtz, G. Vilardo, and G. Ventura (2010), Viscosity of crystal-bearing melts and its implication for magma ascent, J. Mineral. Petrol. Sci., 105, 151–163, doi:10.2465/jmps.090402. Weitz, D. A. (2004), Packing in the spheres, Science, 303, 968, doi:10.1126/science.1094581. Zhou, Z., M. J. Solomon, P. J. Scales, and D. V. Boger (1999), The yield stress of concentrated flocculated suspensions of size distributed particles, J. Rheol., 43, 651, doi:10.1122/ 1.551029.en
dc.description.obiettivoSpecifico2.3. TTC - Laboratori di chimica e fisica delle rocceen
dc.description.journalTypeJCR Journalen
dc.description.fulltextrestricteden
dc.relation.eissn1525-2027en
dc.contributor.authorDel Gaudio, P.en
dc.contributor.authorVentura, G.en
dc.contributor.authorTaddeucci, J.en
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione ONT, Roma, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma1, Roma, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma1, Roma, Italia-
crisitem.author.orcid0000-0002-0977-1237-
crisitem.author.orcid0000-0001-9388-9985-
crisitem.author.orcid0000-0002-0516-3699-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
DelGaudioetal_G3XXX_2013.pdfmain article1.36 MBAdobe PDF
Show simple item record

WEB OF SCIENCETM
Citations

23
checked on Feb 10, 2021

Page view(s) 50

273
checked on Apr 17, 2024

Download(s)

30
checked on Apr 17, 2024

Google ScholarTM

Check

Altmetric