Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/8771
DC FieldValueLanguage
dc.contributor.authorallMonna, S.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
dc.contributor.authorallSgroi, T.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
dc.contributor.authorallDahm, T.; Helmholtz-Zentrum Potsdam, Deutsches Geo Forschungs Zentrum, Potsdam, Germanyen
dc.date.accessioned2013-10-11T08:05:42Zen
dc.date.available2013-10-11T08:05:42Zen
dc.date.issued2013en
dc.identifier.urihttp://hdl.handle.net/2122/8771en
dc.description.abstractWe present results from the first crustal seismic tomography for the southern Tyrrhenian area, which includes ocean bottom seismometer (OBS) data and a bathymetry correction. This area comprises Mt. Etna, the Aeolian Islands, and many volcanic seamounts, including the Marsili Seamount. The seismicity distribution in the area depends on the complex interaction between tectonics and volcanism. The 3-D velocity model presented in this study is obtained by the inversion of P wave arrival times from crustal earthquakes. We integrate travel time data recorded by an OBS network (Tyrrhenian Deep Sea Experiment), the SN-1 seafloor observatory, and the land network. Our model shows a high correlation between the P wave anomaly distribution and seismic and volcanic structures. Two main low-velocity anomalies underlie the central Aeolian Islands and Mt. Etna. The two volumes, which are related to the well-known active volcanism, are separated and located at different depths. This finding, in agreement with structural, petrography, and GPS data from literature, confirms the independence of the two systems. The strongest negative anomaly is found below Mt. Etna at the base of the crust, and we associate it with the deep feeding system of the volcano. We infer that most of the seismicity is generated in brittle rock volumes that are affected by the action of hot fluids under high pressure due to the active volcanism in the area. Lateral changes of velocity are related to a transition from the western to the central Aeolian Islands and to the passage from continental crust to the Tyrrhenian oceanic uppermost mantle.en
dc.language.isoEnglishen
dc.publisher.nameAmerican Geophysical Unionen
dc.relation.ispartofGeochemistry, Geophysics, Geosystemsen
dc.relation.ispartofseries/14 (2013)en
dc.subjectocean bottom seismometersen
dc.subjectsouthern Tyrrhenian Seaen
dc.subjectseismic tomographyen
dc.subjectAeolian Islandsen
dc.subjectEtnaen
dc.subjectoceanic continental crusten
dc.titleNew insights on volcanic and tectonic structures of the southern Tyrrhenian (Italy) from marine and land seismic dataen
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber3703–3719en
dc.subject.INGV04. Solid Earth::04.06. Seismology::04.06.06. Surveys, measurements, and monitoringen
dc.subject.INGV04. Solid Earth::04.06. Seismology::04.06.07. Tomography and anisotropyen
dc.subject.INGV04. Solid Earth::04.07. Tectonophysics::04.07.04. Plate boundaries, motion, and tectonicsen
dc.subject.INGV04. Solid Earth::04.07. Tectonophysics::04.07.06. Subduction related processesen
dc.subject.INGV04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonicsen
dc.identifier.doi10.1002/ggge.20227en
dc.relation.referencesAlbarkde, F. (1993), Residence time analysis of geochemical fluctuations in volcanic series, Geochim. Cosmochim. Acta, 57, 615–621. Allard, P., J. Carbonnelle, N. Metrich, H. Loyer, and P. Zettwoog (1994), Sulphur output and magma degassing budget of Stromboli volcano, Nature, 268, 326–330. Argnani, A. (2009), Evolution of the southern Tyrrhenian slab tear and active tectonics along the western edge of the Tyrrhenian subducted slab, Geol. Soc. Spec. Publ., 311, 193–212. Argnani, A., E. Serpelloni, and C. Bonazzi (2007), Pattern of deformation around the central Aeolian Islands : Evidence from multichannel seismics and GPS data, Terra Nova, 19(5), 317–323, doi :10.1111/j.1365– 3121.2007.00753.x. Armienti, P., F. Innocenti. R. Petrini, M. Pompilio, and L. Villari (1989), Petroloy and Sr-Nd isotope geochemistry of recent lavas from Mt. Etna: Bearing on the volcano feeding system, J. Volcanol. Geotherm. Res., 39, 315–327. Barberi, G., O. Cocina, G. Neri, E. Privitera, and S. Spampinato (2000), Volcanological inferences from seismic-strain tensor computations at Mt. Etna volcano, Sicily, Bull. Volcanol., 62, 318–330. Barberi, G., M. T. Cosentino, A. Gervasi, I. Guerra, G. Neri, and B. Orecchio (2004), Crustal seismic tomography in the Calabrian arc region, south Italy, Phys. Earth Planet. Inter., 147, 297–314. Benz, H. M., B. A. Chouet, P. B. Dawson, R. A. Kahr, and J. A. Hole (1996), Three dimensional P and S wave velocity structure of Redoubt Volcano, Alaska, J. Geophys. Res., 101, 8111–8128, doi:10.1029/95JB03046. Billi, A., G. Barberi, C. Faccenna, G. Neri, F. Pepe, and A. Sulli (2006), Tectonics and seismicity of the Tindari Fault System, southern Italy : Crustal deformations at the transition between ongoing contractional and extensional domains located above the edge of a subducting slab, Tectonics, 25, TC2006, doi:10.1029/2004TC001763. Bonardi, G., W. Cavazza, V. Perrone, and S. Rossi (2001), Calabria-Peloritani terrane and northern Ionian Sea, in Anatomy of an Orogen: the Apennines and Adjacent Mediterranean Basins, edited by G. B. Vai and I. P. Martini, pp. 287– 306, Kluwer Acad., Amsterdam, Netherlands. Bortoluzzi, G., et al. (2010), Interactions between volcanism and tectonics in the western Aeolian sector, southern Tyrrhenian sea, Geophys. J. Int., 183, 64–78, doi:10.1111/j.1365- 246X.2010.04729.x. Boschi, E., E. Guidoboni, G. Ferrari, G. Valensise, and P. Gasperini (1997), Catalogue of the Strong Italian Earthquakes in Italy From 461 BC to 1990, 973 pp., ING & SGA, Bologna, Italy. Caccamo, D., G. Neri, A. Sarao, and M. Wyss (1996), Estimates of stress directions by inversion of earthquake fault plane solutions in Sicily, Geophys. J. Int., 125, 857–868. Castellano, M., F. Bianco, S. Imposa, G. Milano, S. Menza, and G. Vilardo (1997), Recent deep earthquake occurrence at Mt. Etna (Sicily, Italy), Phys. Earth Planet. Inter., 102, 277–289. Castello, B., G. Selvaggi, C. Chiarabba, and A. Amato (2005), CSI Catalogo della Sismicit a Italiana 1981–2002, Versione 1.0, INGV-CNT, Rome, Italy. [Available at http://www.ingv. it/CSI/.]. Catalano, R., C. Doglioni, and S. Merlini (2000), On the Mesozoic Ionian Basin, Geophys. J. Int., 144, 49–64. Chiarabba, C., L. Jovane, and R. Di Stefano (2005), A new view to the Italian seismicity using 20 years of instrumental recordings, Tectonophysics, 395, 251–268, doi:10.1016/ j.tecto.2004.09.013. Dahm, T., and T. Becker (1998), On the elastic and viscous properties of media containing strongly interacting in-plane cracks, PAGEOPH, 151, 1–16. Dahm, T., M. Thorwart, E. R. Flueh, T. Braun, R. Herber, P. Favali, L. Beranzoli, G. D’Anna, F. Frugoni, and G. Smriglio (2002), Ocean bottom seismometers deployed in Tyrrhenian Sea, Eos Trans. AGU, 83(29), 309–315. De Astis, G., G. Ventura, and G. Vilardo (2003), Geodynamic significance of the Aeolian volcanism (southern Tyrrhenian Sea, Italy) in light of structural, seismological, and geochemical data, Tectonics, 22(4), 1040, doi:10.1029/2003TC001506. De Luca, G., L. Filippi, D. Caccamo, G. Neri, and R. Scarpa (1997), Crustal structure and seismicity of southern Tyrrhenian basin, Phys. Earth Planet. Inter., 103, 117–133. Di Stefano, R., C. Chiarabba, F. Lucente, and A. Amato (1999), Crustal and uppermost mantle structure in Italy from the inversion of P-wave arrival times: Geodynamic implications, Geophys. J. Int., 139, 483–498, doi:10.1046/j.1365- 246x.1999.00952.x. Di Stefano, R., I. Bianchi, M. G. Ciaccio, G. Carrara, and E. Kissling (2011), Three-dimensional Moho topography in Italy : New constraints from receiver functions and controlled source seismology, Geochem. Geophys. Geosyst., 12, Q09006, doi:10.1029/2011GC003649. Doglioni, C. (1991), A proposal kinematic modeling for W-dipping subductions—Possible applications to the Tyrrhenian-Apennine systems, Terra Nova, 3, 423–434. Doglioni, C., F. Innocenti, and G. Mariotti (2001), Why Mt. Etna?, Terra Nova, 13, 25–31. Falsaperla, S., G. Lanzafame, V. Longo, and S. Spampinato (1999), Regional stress field in the area of Stromboli (Italy) : Insights into structural data and crustal tectonic earthquakes, J. Volcanol. Geotherm. Res., 88, 147–166. Favali, P., et al. (2006), A fleet of multiparameter observatories for geophysical and environmental monitoring at seafloor, Ann. Geophys., 49(2/3), 659–680. Frepoli, A., and A. Amato (2000), Spatial variation in stresses in peninsular Italy and Sicily from background seismicity, Tectonophysics, 317, 109–124. GLOBE Task Team et al. (1999), The Global Land One- Kilometer Base Elevation (GLOBE) Digital Elevation Model, Version 1.0, http://www.ngdc.noaa.gov/mgg/topo/ globe.html and CD-ROMs, Natl. Oceanic and Atmos. Admin., Natl. Geophys. Data Cent., Boulder, Colo. Grad, M., T. Tiira, and ESC Working Group (2009), The Moho depth map of the European Plate, Geophys. J. Int., 176, 279–292, doi:10.1111/j.1365-246X.2008.03919.x. Gvirtzman, Z., and A. Nur (1999), The formation of Mount Etna as the consequence of slab rollback, Nature, 401, 782–785. Hirn, A., R. Nicolich, J. Gallart, M. Laigle, L. Cernobori, and ETNASEIS Scientific Group (1997), Roots of Etna volcano in faults of great earthquakes, Earth Planet. Sci. Lett., 148, 171–191. Italian Seismic Bulletin, 2003–2012. [Available at http://bolletti nosismico.rm.ingv.it/.] Kasten, K., et al. (1988), ODP leg 107 in the Tyrrhenian Sea: Insights into passive margin and back-arc evolution, Geol. Soc. Am. Bull., 100(7), 1140–1156. Kissling, E., W. L. Ellsworth, D. Eberhart-Phillips, and U. Kradolfer (1994), Initial reference models in local earthquake tomography, J. Geophys. Res., 99, 19,635–19,646. K€uhn, D., and T. Dahm (2008), Numerical modelling of dyke interaction and its influence on oceanic crust formation, Tectonophysics, 447, 53–65. Lahr, J. C. (1989), HYPOELLIPSE/version 2.0: A computer program for determining local earthquake hypocentral parameters, magnitude, and first motion pattern, U.S. Geol. Surv. Open File Rep., 95, 89–116. Langer, H., R. Raffaele, A. Scaltrito, and L. Scarfi (2007), Estimation of an optimum velocity model in the Calabro- Peloritan mountains—Assessment of the variance of model parameters and variability of earthquake locations, Geophys. J. Int., 170(3), 1151–1164, doi:10.1111/j.1365- 246X.2007.03459.x. Lanzafame, G., and J. C. Bousquet (1997), The Maltese escarpment and its extension from Mt. Etna to the Aeolian Islands (Sicily): Importance and evolution of a lithosphere discontinuity, Acta Vulcanol., 9, 113–120. Lucchi, F., C. A. Tranne, and P. L. Rossi (2008), New chronostratigraphic constraints for the eruptive history of Alicudi volcano (Aeolian archipelago, Italy), Geoacta, 7(7389), 115–131. Malinverno, A., and W. B. F. Ryan (1986), Extension in the Tyrrhenian sea and shortening in the Apenines as result of arc migration driven by sinking of the lithosphere, Tectonics, 5, 227–245. Marani, M., and T. Trua (2002), Thermal constriction and slab tearing at the origin of a superinflated spreading ridge: Marsili volcano (Tyrrhenian Sea), J. Geophys. Res., 107(B9), 2188, doi:10.1029/2001JB000285. Monaco, C., P. Tapponnier, L. Tortorici, and P. Y. Gillot (1997), Late Quaternary slip rates on the Acireale- Piedimonte normal faults and tectonic origin of Mt. Etna (Sicily), Earth Planet. Sci. Lett., 147, 125–139. Monna, S., and T. Dahm (2009), Three-dimensional P wave attenuation and velocity upper mantle tomography of the southern Apennines-Calabrian Arc subduction zone, J. Geophys. Res., 114, B06304, doi:10.1029/2008JB005677. Monna, S., F. Frugoni, C. Montuori, L. Beranzoli, and P. Favali (2005), High quality seismological recordings from the SN-1 deep seafloor observatory in the Mt. Etna region, Geophys. Res. Lett., 32, L07303, doi:10.1029/ 2004GL021975. Montuori, C., G. B. Cimini, and P. Favali (2007), Teleseismic tomography of the southern Tyrrhenian subduction zone: New results from seafloor and land recordings, J. Geophys. Res., 112, B03311, doi:10.1029/2005JB004114. Murru, M., R. Console, G. Falcone, C. Montuori, and T. Sgroi (2007), Spatial mapping of the b value at Mount Etna, Italy, using earthquake data recorded from 1999 to 2005, J. Geophys. Res., 112, B12303, doi:10.1029/2006JB004791. Neri, G., D. Caccamo, O. Cocina, and A. Montalto (1996), Geodynamic implications of earthquakes data in the southern Tyrrhenian Sea, Tectonophysics, 258, 233–249. Neri, G., G. Barberi, B. Orecchio, and M. Aloisi (2002), Seismotomography of the crust in the transition zone between the southern Tyrrhenian and Sicilian tectonic domains, Geophys. Res. Lett., 29(23), 2135, doi:10.1029/2002GL015562. Neri, G., G. Barberi, B. Orecchio, and A. Mostaccio (2003), Seismic strain and seismogenic stress regimes in the crust of the southern Tyrrhenian region, Earth Planet. Sci. Lett., 213, 97–112. Neri, G., G. Barberi, G. Oliva, and B. Orecchio (2005), Spatial variation of seismogenic stress orientations in Sicily, South Italy, Phys. Earth Planet. Inter., 148, 175–191. Paige, C. C., and M. A. Saunders (1982), LSQR: An algorithm for sparse linear equations and sparse least squares, Trans. Math. Software, 8, 43–71, doi:10.1145/355984.355989. Patane`, D., and E. Privitera (2001), Seismicity related to the 1989 and 1991–93 Mt. Etna (Sicily) eruptions: Kinematic constraints by fault plane solution analysis, J. Volcanol. Geotherm. Res., 109, 77–98. Patane`, D., G. Barberi, O. Cocina, P. De Gori, and C. Chiarabba (2006), Time-resolved seismic tomography detects magma intrusions at Mount Etna, Science, 313, 821–823, doi:10.1126/science.1127724. Peccerillo, A. (2001), Geochemical similarities between the Vesuvius, Phlegraean Fields and Stromboli Volcanoes: Petrogenetic, geodynamic and volcanological implications, Mineral. Petrol., 73, 93–105. Pepe, F., A. Sulli, G. Bertotti, and R. Catalano (2005), Structural highs formation and their relationship to sedimentary basins in the north Sicily continental margin (southern Tyrrhenian Sea): Implication for the Drepano Thrust Front, Tectonophysics, 409, 1–18. Podvin, P., and I. Lecompte (1991), Finite difference computation of travel times in very contrasted velocity models: A massive parallel approach and its associated tools, Geophys. J. Int., 105, 271–284, doi:10.1111/j.1365-246X.1991.tb03461.x. Pondrelli, S., C. Piromallo, and E. Serpelloni (2004). Convergence vs. retreat in southern Tyrrhenian Sea: Insights from kinematics, Geophys. Res. Lett., 31(6), L06611, doi:10.1029/2003GL019223. Pondrelli, S., S. Salimbeni, G. Ekström, A. Morelli, P. Gasperini, and G. Vannucci (2006), The Italian CMT dataset from 1977 to the present, Phys. Earth Planet. Inter., 159, 286– 303. Scarf ı, L., H. Langer, and A. Scaltrito (2009), Seismicity, seismotectonics and crustal velocity structure of the Messina Strait (Italy), Phys. Earth Planet. Inter., 177, 65–78. Schorlemmer, D., F. Mele, and W. Marzocchi (2010), A completeness analysis of the National Seismic Network of Italy, J. Geophys. Res., 115, B04308, doi:10.1029/2008JB006097. Serpelloni, E., G. Vannucci, S. Pondrelli, A. Argnani, G. Casula, M. Anzidei, P. Baldi, and P. Gasperini (2007), Kinematics of the Western Africa-Eurasia plate boundary from focal mechanisms and GPS data. Geophys. J. Int., 169, 1180–1299. Sgroi, T., L. Beranzoli, G. Di Grazia, A. Ursino, and P. Favali (2007), New observations of local seismicity by the SN-1 seafloor observatory in the Ionian Sea, off-shore eastern Sicily (Italy), Geophys. J. Int., 169, 490–501. Sgroi, T., T. Braun, T. Dahm, and F. Frugoni (2006), An improved seismicity picture of the southern Tyrrhenian area by the use of OBS and land based networks: The TYDE experiment, Ann. Geophys., 49, 801–817. Sharp, A. D. L., P. M. Davis, and F. Gray (1980), A low velocity zone beneath Mount Etna and magma storage, Nature, 287, 587–591. Spi c ak, A., and J. Hor alek (2001), Possible role of fluids in the process of earthquake swarm generation in the West Bohemia/ Vogtland seismoactive region, Tectonophysics, 336, 1– 4, 151–161. Tranne, C. A., F. Lucchi, N. Calanchi, P. L. Rossi, T. Campanella, and A. Sardella (2002), Geological map ofthe Island of Filicudi (Aeolian Islands, scale 1:10.000), Univ. of Bologna and INGV, printed by L.A.C., Florence, Italy. Trua, T., G. Serri, and P. L. Rossi (2004), Coexistence of IABtype and OIB-type magmas in the southern Tyrrhenian backarc basin: Evidence from recent seafloor sampling and the geodynamic implications, in From Seafloor to Deep Mantle: Architecture of the Tyrrhenian Backarc Basin, Mem. Descr. Carta Geol. d’It., vol. 44, edited by M. P. Marani, F. Gamberi and E. Bonatti, pp. 83–96, Agenzia per la Prot. dell’Ambiente e per i Serv. Tec., Rome. Villase~nor, A., H. M. Benz, L. Filippi, G. De Luca, R. Scarpa, G. Patane`, and S. Vinciguerra (1998), Three-dimensional P wave velocity structure of Mount Etna, Italy, Geophys. Res. Lett., 25, 1975–1978. Wessel, P., and W. H. Smith (1991), Free software helps map and display data, Eos Trans. AGU, 72(41), 441–446.en
dc.description.obiettivoSpecifico1.4. TTC - Sorveglianza sismologica delle aree vulcaniche attiveen
dc.description.obiettivoSpecifico3.3. Geodinamica e struttura dell'interno della Terraen
dc.description.journalTypeJCR Journalen
dc.description.fulltextopenen
dc.relation.issn1525-2027en
dc.relation.eissn1525-2027en
dc.contributor.authorMonna, S.en
dc.contributor.authorSgroi, T.en
dc.contributor.authorDahm, T.en
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
dc.contributor.departmentHelmholtz-Zentrum Potsdam, Deutsches Geo Forschungs Zentrum, Potsdam, Germanyen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma2, Roma, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma2, Roma, Italia-
crisitem.author.deptGFZ Geoforschungszentrum Potsdam-
crisitem.author.orcid0000-0001-9241-1322-
crisitem.author.orcid0000-0001-7030-0699-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
MonnaSgroiDahmG32013.pdf1.62 MBAdobe PDF
Show simple item record

WEB OF SCIENCETM
Citations

9
checked on Feb 10, 2021

Page view(s) 10

608
checked on Apr 24, 2024

Download(s) 50

87
checked on Apr 24, 2024

Google ScholarTM

Check

Altmetric