Please use this identifier to cite or link to this item:
http://hdl.handle.net/2122/8712
DC Field | Value | Language |
---|---|---|
dc.contributor.authorall | Settimi, A.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italia | en |
dc.contributor.authorall | Sciacca, U.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italia | en |
dc.contributor.authorall | Bianchi, C.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italia | en |
dc.date.accessioned | 2013-05-20T17:59:05Z | en |
dc.date.available | 2013-05-20T17:59:05Z | en |
dc.date.issued | 2013-03-20 | en |
dc.identifier.uri | http://hdl.handle.net/2122/8712 | en |
dc.description.abstract | The present paper conducts a scientific review on the complex eikonal, extrapolating the research perspectives on the ionospheric ray-tracing and absorption. As regards the scientific review, the eikonal equation is expressed, and some complex-valued solutions are defined corresponding to complex rays and caustics. Moreover, the geometrical optics is compared to the beam tracing method, introducing the limit of the quasi-isotropic and paraxial complex optics approximations. Finally, the quasi-optical beam tracing is defined as the complex eikonal method applied to ray-tracing, discussing the beam propagation in a cold magnetized plasma. As regards the research perspectives, this paper proposes to address the following scientific problem: in absence of electromagnetic (e.m.) sources, consider a material medium which is time invariant, linear, optically isotropic, generally dispersive in frequency and inhomogeneous in space, with the additional condition that the refractive index is assumed varying even strongly in space. The paper continues the topics discussed by Bianchi et al. [2009], proposing a novelty with respect to the other referenced bibliography: indeed, the Joule’s effect is assumed non negligible, so the medium is dissipative, and its electrical conductivity is not identically zero. In mathematical terms, the refractive index belongs to the field of complex numbers. The dissipation plays a significant role, and even the eikonal function belongs to the complex numbers field. Under these conditions, for the first time to the best of our knowledge, suitable generalized complex eikonal and transport equations are derived, never discussed in literature. Moreover, in order to solve the ionospheric ray-tracing and absorption problems, we hint a perspective viewpoint. The complex eikonal equations are derived assuming the medium as optically isotropic. However, in agreement with the quasi isotropic approximation of geometrical optics, these equations can be referred to the Appleton-Hartree’s refractive index for an ionospheric magneto-plasma, which becomes only weakly anisotropic in the presence of Earth’s magnetic induction field. Finally, a simple formula is deduced for a simplified problem. Consider a flat layering ionospheric medium, so without any horizontal gradient. The paper proposes a new formula, useful to calculate the amplitude absorption due to the ionospheric D-layer, which can be approximately modelled by a linearized complex refractive index, because covering a short range of heights, between h1= 50 km and h2= 80 km about. | en |
dc.description.sponsorship | Istituto Nazionale di Geofisica e Vulcanologia (INGV) | en |
dc.language.iso | English | en |
dc.relation.ispartofseries | Quaderni di Geofisica | en |
dc.relation.ispartofseries | 112 | en |
dc.subject | Ionosphere | en |
dc.subject | D-layer | en |
dc.subject | Quasi Longitudinal propagation | en |
dc.subject | Non-Deviative absorption | en |
dc.subject | Complex Eikonal theory | en |
dc.title | Scientific review on the Complex Eikonal, and research perspectives for the Ionospheric Ray-tracing and Absorption | en |
dc.title.alternative | Rassegna scientifica sull’Iconale Complessa e prospettive di ricerca per il Ray-tracing e l’Assorbimento ionosferici | en |
dc.type | report | en |
dc.description.status | Published | en |
dc.type.QualityControl | Peer-reviewed | en |
dc.identifier.URL | http://istituto.ingv.it/l-ingv/produzione-scientifica/quaderni-di-geofisica/ | en |
dc.subject.INGV | 01. Atmosphere::01.02. Ionosphere::01.02.04. Plasma Physics | en |
dc.subject.INGV | 01. Atmosphere::01.02. Ionosphere::01.02.05. Wave propagation | en |
dc.subject.INGV | 05. General::05.05. Mathematical geophysics::05.05.99. General or miscellaneous | en |
dc.relation.references | Babich V. M., (1961). On the convergence of series in the ray method of calculation of the intensity of wave fronts. In: Problems of the Dynamic Theory of Propagation of Seismic Waves (G. I. Petrashen ed.), vol. 5, pp. 25-35, Leningrad: Leningrad Univ. Press [in Russian]. Bellotti U., Bornatici M. and Engelmann F., (1997). Radiative Energy-Transfer in Anisotropic, Spatially Dispersive, Weakly Inhomogeneous and Dissipative Media with Embedded Sources. La Rivista del Nuovo Cimento della Societa Italiana di Fisica, 20(5), 1-67. Berczynski P., Bliokh K. Yu., Kravtsov Yu. A., Stateczny A., (2006). Diffraction of Gaussian beam in three-dimensional smoothly inhomogeneous medium: Eikonal-based complex geometrical optics approach. J. Opt. Soc. Am. A, 23 (6), 1442-1451. Berczynski P. and Kravtsov Yu. A., (2004). Theory for Gaussian beam diffraction in 2D inhomogeneous medium, based on the eikonal form of complex geometrical optics. Phys. Lett. A, 331 (3-4), 265–268. Berczynski P., Kravtsov Yu. A., Żegliński G., (2010). Gaussian beam diffraction in inhomogeneous media of cylindrical symmetry. Optica Applicata, Vol. XL, No. 3, pp. 705-718. Bernstein I. B., (1975). Geometric optics in space — and time — varying plasmas. Phys. Fluids 18 (3), 320-324. Bianchi C., (1990). Note sulle interazioni delle onde elettromagnetiche con il plasma ionosferico. Istituto Nazionale di Geofisica, U. O. Aeronomia, Rome, Italy, 149 pp. [in Italian]. Bianchi C. and Bianchi S. (2009). Problema generale del ray-tracing nella propagazione ionosferica - formulazione della “ray theory” e metodo del ray tracing. Rapporti Tecnici INGV, 104, 26 pp. [in Italian]. Bianchi S., Sciacca U., Settimi A., (2009). Teoria della propagazione radio nei mezzi disomogenei (Metodo dell’iconale). Quaderni di Geofisica, 75, 14 pp. [in Italian]. Born M. and Wolf E., (1999). Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, Cambridge University Press, Cambrige, UK, 7th expanded edition, 986 pp. Bornatici M. and Maj O., (2003). Wave beam propagation in a weakly inhomogeneous isotropic medium: paraxial approximation and beyond. Plasma Phys. Controlled Fusion, 45 (5), 707-719. Bouche D. and Molinet F., (1994). Méthodes asymptotiques en électromagnétisme. Springer-Verlag, Berlin, 416 pp. Bruss A., (1982). The eikonal equation: some results applicable to computer vision. J. Math. Phys., 23 (5), 890–896. Budden, K.G., (1988). The propagation of the radio wave. Cambridge University Press, Cambridge, UK, 688 pp. Chapman S. J., Lawry J. M. H., Ockendon J. R. and Tew R. H., (1999). On the theory of complex rays. SIAM Review, 41 (3), 417-509. Choudhary S. and Felsen L. B., (1973). Asymptotic theory for inhomogeneous waves. IEEE Trans. Antennas and Propagation, 21 (6), 827-842. Choudhary S. and Felsen L. B., (1974). Analysis of Gaussian beam propagation and diffraction by inhomogeneous wave tracking. Proc. IEEE, 62 (11), 1530-1541. Coleman C. J., (1998). A ray-tracing formulation and its application to some problems in over-the-horizon radar. Radio Science, 33(4), 1187 – 1197. Davies, K., (1990). Ionospheric Radio. Peter Peregrinus Ltd. (ed.), London, UK, 508 pp. Dellinger J. (1991). Anisotropic finite-difference traveltimes. In: SEG Technical Program Expanded Abstracts (SEG ed.), 10 – 14 November 1991, Houston, Texas, pp. 1530–1533. Deschamps G.A., (1971). Gaussian beam as a bundle of complex rays. Electron. Lett., 7 (23), 684-685. Dominici, P., (1971). Radiopropagazione Ionosferica. Monografie Scientifiche e Tecniche del Servizio Ionosferico Nazionale, Istituto Nazionale di Geofisica, Rome, Italy, 153 pp [in Italian]. Einzinger P. and Felsen L. B., (1982). Evanescent waves and complex rays. IEEE Trans. Ant. Prop., 30 (4), 594-605. Einzinger P. and Raz S., (1980). On the asymptotic theory of inhomogeneous wave tracking. Radio Science, 15 (4), 763-771. Farina D., (2007). A Quasi-Optical Beam-Tracing Code for Electron Cyclotron Absorption and Current Drive: GRAY. Fusion Sci. Technol., 52 (2), 154-160. Felsen L. B., (1976a). Evanescent waves. J. Opt. Soc. Am., 66 (8), 751-760. Felsen L. B., (1976b). Complex-source-point solutions of the field equations and their relation to the propagation and scattering of Gaussian beams. Symposia Mathematica, 18, 39-56. Fock V. A., (1965). Electromagnetic Diffraction and Propagation Problems, Pergamon Press, New York, 425 pp. Fuki A. A., Kravtsov Yu. A., Naida O. N., (1998). Geometrical Optics of Weakly AnisotropicMedia. Gordon & Breach Science Publishers, Amsterdam, The Netherlands, 182 pp. Gori, F. (1997). Elementi di ottica. Accademica, Rome, Italy, 653 pp. [in Italian]. Heyman E. and Felsen L. B. (1983). Evanescent waves and complex rays for modal propagation in curved open waveguides. SIAM J. Appl. Math., 43 (4), 855-884. Honoré C., Hennequin P., Truc A. and Quéméneur A. (2006). Quasi-optical Gaussian beam tracing to evaluate Doppler backscattering conditions. Nucl. Fusion 46 (9), S809. Jones D. S., (1964). The Theory of Electromagnetism. Pergamon Press, Oxford, New York, 807 pp. Keller, J. B. (1958). Calculus of Variations and its Applications. In: Proceedings of Svmnposia in Applied Math, edited by L. M. Graves (McGraw-Hill Book Company, Inc., New York and American Mathematical Society), vol. 8, p. 27, Providence, Rhode Island. Keller J. B. and Karal F. C., (1960). Surface Wave Excitation and Propagation. J. Appl. Phys., 31 (6), 1039-1046. Keller J. B. and Streifer W., (1971). Complex rays with application to Gaussian beams. J. Opt. Soc. Am., 61 (1), 40-43. Kim S., (2001). An O(N) level set method for eikonal equation. SIAM Journal on Scientific Computing, 22 (6), 2178–2193. Kim S. and Cook R., (1999). 3-D traveltime computation using second-order ENO scheme. Geophysics, 64 (6), 1867–1876. Kline M., (1951). An asymptotic solution of Maxwell’s equation. Comm. Pure Appl. Math., 4 (2-3), 225-262. Kravtsov Yu. A., (1969). Quasi-isotropic geometrical optics approximation. Sov. Phys. Dokl., 13 (11), 1125-1127. Kravtsov Yu.A., (2005). Geometrical Optics in Engineering Physics, Alpha Science International Ltd, UK, 370 pp. Kravtsov Yu. A. and Berczynski P., (2004). Description of the 2D Gaussian beam diffraction in a free space in frame of eikonal-based complex geometric optics. Wave Motion, 40 (1), 23-27. Kravtsov Yu. A. and Berczynski P., (2007). Gaussian beams in inhomogeneous media: A review. Stud. Geophys. Geod. 51, (1), 1-36. Kravtsov Yu. A., Berczynski P., Bieg B., (2009). Gaussian beam diffraction in weakly anisotropic inhomogeneous media. Phys. Lett. A 373, (33), 2979–2983. Kravtsov Yu. A., Forbes G.W., Asatryan A.A., (1999). Theory and applications of complex rays. In: Progress in Optics (E. Wolf ed.), vol. 39, pp. 3–62, Elsevier, Amsterdam. Kravtsov Yu. A., Naida O. N. and Fuki A. A., (1996). Waves in weakly anisotropic 3D inhomogeneous media: quasi-isotropic approximation of geometrical optics. Phys. Usp., 39 (2), 129-154. Kravtsov Yu. A. and Orlov Yu. I., (1980). Limits of applicability of the method of geometrical optics and related problems. Sov. Phys. Usp. 23 (11), 750-762. Kravtsov Yu. A. and Orlov Yu. I., (1990). Geometrical Optics of Inhomogeneous Media. Springer Series on Wave Phenomena, vol. 6, Springer-Verlag, Berlin. Landau L. D. and Lifshitz E. M., (1980). The Classical Theory of Fields (Fourth Edition): Course of Theoretical Physics Series (Volume 2), Butterworth-Heinemann, Oxford, 402 pp. Lewis R. M. and Keller J. B., (1964). Asymptotic methods for partial differential equations: the reduced wave equation and Maxwell’s equation. Research Report No. FM-1964, New York University, Courant Institute of Mathematical Sciences, Division of Electromagnetic Research, Bedford, Massachusetts, United States, 142 pp. Lunenburg R. K., (1964). Mathematical Theory of Optics. University of California Press, 448 pp. Lynch D. K. and Livingston W., (2001). Color and Light in Nature. Cambridge University Press, Cambrige, UK, 277 pp. Malladi R. and Sethian J., (1996). A unified approach to noise removal, image enhancement, and shape recovery. IEEE Trans. on Image Processing, 5 (11), 1554–1568. Maslov V. P., (1963). The scattering problem in the quasi-classical approximation, Dokl. Akad. Nauk SSSR, 151 (2), 306–309. Maslov V. P., (1965). Perturbation Theory and Asymptotic Methods, Izdat. Moskov. Univ., Moscow [in Russian]. Mazzucato E., (1989). Propagation of a Gaussian beam in a non-homogeneous plasma. Phys. Fluids B, 1 (9), 1855-1859. Nowak S. and Orefice A.,(1993). Quasioptical treatment of electromagnetic Gaussian beams in inhomogeneous and anisotropic plasmas. Phys. Fluids B, 5 (7), 1945-1954. Nowak S. and Orefice A., (1994). Three‐dimensional propagation and absorption of high frequency Gaussian beams in magnetoactive plasmas. Phys. Plasmas 1 (5), 1242-1250. Pereverzev G. V., (1996). Review of Plasma Physics, vol. 19, (B. B. Kadomtsev ed.), Springer-Verlag, Berlin, 268 pp. Pereverzev G. V., (1998). Beam tracing in inhomogeneous anisotropic plasmas. Phys. Plasmas 5 (10), 3529-3541. Permitin G. V. and Smirnov A. I., (1996). Quasioptics of smoothly inhomogeneous isotropic media. JETP 82(3), 395-402. Poli E., Pereverzev G. V., Peeters A. G., (1999). Paraxial Gaussian wave beam propagation in an anisotropic inhomogeneous plasma. Phys. Plasmas 6 (1), 5-11. Popovici A. and Sethian J. (2002). 3-d imaging using higher order fast marching traveltimes. Geophysics, 67 (2), 604–609. Press W. H., Teukolsky S. A.., Vetterling W. T., Flannery B. P., (1992). Numerical Recipes in Fortran 90: The Art of Parallel Scientific Computing. Volume 1 of Fortran Numerical Recipes (Second Edition). Cambridge University Press, UK, pp. 1-934. Press W. H., Teukolsky S. A.., Vetterling W. T., Flannery B. P., (1996). Numerical Recipes in Fortran 90: The Art of Parallel Scientific Computing. Volume 2 of Fortran Numerical Recipes (Second Edition). Cambridge University Press, UK, pp. 935-1486. Qin F., Luo Y., Olsen K., Cai W. and Schuster G., (1992). Finite-difference solution of the eikonal equation along expanding wavefronts. Geophysics, 57 (3), 478–487. Rawer, K. (1976). Manual on ionospheric absorption measurements. Report UAG – 57, edited by K. Raver, published by World Data Center A for Solar-Terrestrial Physics, NOAA, Boulder, Colorado, USA, and printed by U.S. Department of Commerce National Oceanic and Atmospheric Administration Environmental Data Service, Asheville, Noth Carolina, USA, 202 pp. Rawlinson N. and Sambridge M., (2005). The fast marching method: an effective tool for tomographics imaging and tracking multiple phases in complex layered media. Explor. Geophys., 36 (4), 341–350. Rouy E. and Tourin A., (1992). A viscosity solutions approach to shape-from-shading. SIAM Journal of Numerical Analysis, 29 (3), 867–884. Sakurai, J. J. (1993). Modern Quantum Mechanics. Addison-Wesley, Revised Edition, 500 pp. Sayasov Yu. S., (1962). On conditions of Sommerfeld type for elliptic operators of any order. In: Proceedings of Second All-Union Symposium on Diffraction of Waves, Gor'kii, pp. 39-41 [in Russian]. Schneider Jr. W., Ranzinger K., Balch A. and Kruse C., (1992). A dynamic programming approach to first arrival traveltime computation in media with arbitrarily distributed velocities. Geophysics, 57 (1), 39–50. Secler B. D. and Keller J. B., (1959). Geometrical Theory of Diffraction in Inhomogeneous Media. J. Acoust. Soc. Amer., 31 (2), 192-205. Sethian J. (1996). A fast marching level set method for monotonically advancing fronts. In: Proc. Natl. Acad. Sci. USA, Applied Mathematics, February 1996, vol. 93 (4), pp. 1591–1595. Sethian J., (1999). Fast marching methods. SIAM Review, 41 (2), 199–235. Sethian J. (2002). Level set methods and fast marching methods: Evolving Interfaces in Computational Geometry, Fluid Mechanics, Computer Vision, and Materials Science. Cambridge University Press, pp. 404. Sheriff R. and Geldart L., (1995). Exploration Seismology. Cambridge University Press, 628 pp. Siddiqi K., Bouix S., Tannenbaum A. and Zucker S., (1999). The hamilton-jacobi skeleton. In: Proc. International Conference on Computer Vision, 20-27 September 1999, Kerkyra, Greece, vol. 2, pp. 828–834. Smirnov A. I. and Petrov E. Y., (1999). In: Proceedings of the 26th EPS Conference on Plasma Physics and Controlled Fusion, 14-18 June 1999, Maastricht, The Netherlands. Contributed Papers, European Physical Society, Petit-Lancy, vol. 23J, p. 1797. Stewart F. G., (undated). Ionospheric Communications Enhanced Profile Analysis & Circuit (ICEPAC) Prediction Program. Technical Manual, 91 pp (http://elbert.its.bldrdoc.gov/hf_prop/manuals/icepac_tech_manual.pdf). Trier J. and Symes W., (1991). Upwind finite-difference calculation of traveltimes. Geophysics, 56 (6), 812–821. Tsai Y., (2002). Rapid and accurate computation of the distance function using grids. J. Comp. Phys., 178 (1), 175–195. Tsitsiklis J., (1995). Efficient algorithms for globally optimal trajectories. IEEE Trans. on Automatic Control, 40 (9), 1528–1538. Vidale J., (1990). Finite-difference calculation of traveltimes in three dimensions. Geophysics, 55 (5), 521–526. Weinberg S., (1962). Eikonal Method in Magnetohydrodynamics. Phys. Rew., 126 (6), 1899-1909. Zhao H., (2004). A fast sweeping method for eikonal equations. Math. Comput., 74 (250), 603–627. | en |
dc.source.commentaryon | Bianchi S., Sciacca U., Settimi A., (2009). Teoria della propagazione radio nei mezzi disomogenei (Metodo dell’iconale). Quaderni di Geofisica, 75, 14 pp. [in Italian]. | en |
dc.description.obiettivoSpecifico | 1.7. Osservazioni di alta e media atmosfera | en |
dc.description.obiettivoSpecifico | 3.9. Fisica della magnetosfera, ionosfera e meteorologia spaziale | en |
dc.description.fulltext | partially_open | en |
dc.contributor.author | Settimi, A. | en |
dc.contributor.author | Sciacca, U. | en |
dc.contributor.author | Bianchi, C. | en |
dc.contributor.department | Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italia | en |
dc.contributor.department | Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italia | en |
dc.contributor.department | Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italia | en |
item.languageiso639-1 | en | - |
item.cerifentitytype | Publications | - |
item.openairetype | report | - |
item.openairecristype | http://purl.org/coar/resource_type/c_93fc | - |
item.fulltext | With Fulltext | - |
item.grantfulltext | open | - |
crisitem.department.parentorg | Istituto Nazionale di Geofisica e Vulcanologia | - |
crisitem.department.parentorg | Istituto Nazionale di Geofisica e Vulcanologia | - |
crisitem.department.parentorg | Istituto Nazionale di Geofisica e Vulcanologia | - |
crisitem.author.dept | Istituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma2, Roma, Italia | - |
crisitem.author.dept | Istituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma2, Roma, Italia | - |
crisitem.author.orcid | 0000-0002-9487-2242 | - |
crisitem.author.orcid | 0000-0002-8137-3102 | - |
crisitem.author.orcid | 0000-0002-0217-5379 | - |
crisitem.author.parentorg | Istituto Nazionale di Geofisica e Vulcanologia | - |
crisitem.author.parentorg | Istituto Nazionale di Geofisica e Vulcanologia | - |
crisitem.classification.parent | 01. Atmosphere | - |
crisitem.classification.parent | 01. Atmosphere | - |
crisitem.classification.parent | 05. General | - |
Appears in Collections: | Reports |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
quaderno112.pdf | Published Report | 1.81 MB | Adobe PDF | View/Open |
quaderno112.docx | Accepted Manuscript | 1.15 MB | Microsoft Word |
Page view(s) 1
1,686
checked on Sep 11, 2024
Download(s) 20
361
checked on Sep 11, 2024