Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/8699
DC FieldValueLanguage
dc.contributor.authorallSeverini, S.; Centro Interforze Studi per le Applicazioni Militari (CISAM), Via Bigattiera Lato Monte 10, San Piero a Grado, 56122 Pisa, Italyen
dc.contributor.authorallSettimi, A.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
dc.date.accessioned2013-05-07T08:44:43Zen
dc.date.available2013-05-07T08:44:43Zen
dc.date.issued2013-03-01en
dc.identifier.urihttp://hdl.handle.net/2122/8699en
dc.description.abstractMaxwell’s equations beautifully describe the electromagnetic fields properties. In what follows we will be interested in giving a new perspective to divergence-free Maxwell’s equations regarding the magnetic induction field: divB=0. To this end we will consider some physical aspects of a system consisting of massive nonrelativistic charged articles, as sources of an electromagnetic field (e.m.) propagating in free space. In particular the link between conservation of total momentum and divergence-free condition for the magnetic induction B field will be deeply investigated.This study presents a new context in which the necessary condition for the divergence-free property of the magnetic induction field in the whole space, known as solenoidality condition, directly comes from the conservation of total momentum for the system, that is, sources and field. This work, in general, leads to results that leave some open questions on the existence, or at least the bservability, of magnetic monopoles, theoretically plausible only under suitable symmetry assumptions as we will show.en
dc.language.isoEnglishen
dc.publisher.nameHindawi Publishing Corporationen
dc.relation.ispartofPhysics Research Internationalen
dc.relation.ispartofseries/v 2013 (2013)en
dc.subjectClassical electromagnetismen
dc.subjectSecond Maxwell equationen
dc.subjectMomentum conservationen
dc.subjectSymmetry theory and magnetic monopolesen
dc.titleOn the Divergenceless Property of the Magnetic Induction Fielden
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumberArticle ID 292834en
dc.subject.INGV05. General::05.03. Educational, History of Science, Public Issues::05.03.99. General or miscellaneousen
dc.subject.INGV05. General::05.06. Methods::05.06.99. General or miscellaneousen
dc.subject.INGV05. General::05.09. Miscellaneous::05.09.99. General or miscellaneousen
dc.identifier.doi10.1155/2013/292834en
dc.relation.references[1] L. D. Landau and E. M. Lifshitz, The Classical Theory of Fields, Fourth Revised English Edition, Course of Theoretical Physics, Volume 2 (Butterworth-Heinemann, Oxford, 1975), 402 pp. [2] T. H. Boyer, Connecting linear momentum and energy for electromagnetic systems, Am. J. Phys., 74 (8), 742 (2006). [3] G. H. Goedecke, On electromagnetic conservation laws, Am. J. Phys., 68 (4), 380 (2000). [4] A. L. Kholmetskii, Apparent paradoxes in classical electrodynamics: the energy–momentum conservation law for a bound electromagnetic field, Eur. J. Phys., 27 (4), 825 (2006). [5] P. Dirac, Quantised singularities of the electromagnetic field, Proc. Roy. Soc. (London) A 133, 60 (1931). [6] J Preskill, Magnetic Monopoles - Annual Review of Nuclear and Particle Science, Vol. 34: 461-530 (1984) [7] Kimball A Milton, Theoretical and experimental status of magnetic monopoles, Rep. Prog. Phys. 69 1637 (2006). [8] H. Minkowski, Nachr. Ges. Wiss. Gottingen, Die Grundgleichungen für die elektromagnetischen Vorgänge in bewegten Körpern, 53-111 (1908); English translation: The Fundamental Equations for Electromagnetic Processes in Moving Bodies. In: The Principle of Relativity, Calcutta: University Press, 1-69 (1920). [9] M. Abraham, Zur Elektrodynamik bewegter Körper, Rend. Circ. Matem. Palermo, 28 (1) (1909); Sull’elettrodinamica di Minkowsky, ibid 30 (1) (1910) p.33-46. [10] R. N. C. Pfeifer, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, Constraining Validity of the Minkowski Energy–Momentum Tensor, Phys. Rev. A 79 (2), 023813 [7 pp.] (2009). [11] S. Severini, A. Settimi, Solenoidalitá e quantitá di moto - Antinomie sull'esistenza dei monopoli magnetici, INTERSCIENZE Edizioni Scientifiche (Milano, Italia, 2012), I Edition (Italian/English), 60 pp. [ISBN 978-88-96623-01-5]. [12] F. Moulin, Magnetic monopoles and Lorentz Force, Il Nuovo Cimento B, 116B, 869-877 (2001). [13] B. Felsager, Geometry, Particles and Fields,Springer-Verlag New York (1998) [14] J.D. Jackson, Classical Electrodynamics, 3rd ed. John Wiley and Sons, Inc. (1999).en
dc.description.obiettivoSpecifico3.9. Fisica della magnetosfera, ionosfera e meteorologia spazialeen
dc.description.journalTypeN/A or not JCRen
dc.description.fulltextpartially_openen
dc.relation.issn2090-2220en
dc.relation.eissn2090-2239en
dc.contributor.authorSeverini, S.en
dc.contributor.authorSettimi, A.en
dc.contributor.departmentCentro Interforze Studi per le Applicazioni Militari (CISAM), Via Bigattiera Lato Monte 10, San Piero a Grado, 56122 Pisa, Italyen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
item.languageiso639-1en-
item.cerifentitytypePublications-
item.openairetypearticle-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
item.grantfulltextopen-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.deptCentro Interforze Studi Applicazioni Militari (CISAM), Via della Bigattiera lato monte 10, 56122 San Piero a Grado, Pisa, Italia-
crisitem.author.orcid0000-0002-9487-2242-
crisitem.classification.parent05. General-
crisitem.classification.parent05. General-
crisitem.classification.parent05. General-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat
Severini and Settimi, Physics Research International [2013].docSubmitted Manuscript (Word)361.5 kBMicrosoft WordView/Open
Severini and Settimi, Physics Research International [2013].pdfPublished Article (pdf)538.14 kBAdobe PDF
Show simple item record

Page view(s) 20

282
checked on Sep 11, 2024

Download(s) 1

2,007
checked on Sep 11, 2024

Google ScholarTM

Check

Altmetric