Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/8684
DC FieldValueLanguage
dc.contributor.authorallQamili, E.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
dc.contributor.authorallDe Santis, A.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
dc.contributor.authorallIsac, A.; Geological Institute of Romania, Bucharest, Romaniaen
dc.contributor.authorallMandea, M.; Centre National d’Etudes Spatiales, Paris, Franceen
dc.contributor.authorallDuka, B.; Faculty of Natural Sciences, University of Tirana, Tirana, Albaniaen
dc.contributor.authorallSimonyan, A.; Institute of Geophysics, Academy of Science, Yerevan, Armeniaen
dc.date.accessioned2013-05-07T06:55:50Zen
dc.date.available2013-05-07T06:55:50Zen
dc.date.issued2013-04-12en
dc.identifier.urihttp://hdl.handle.net/2122/8684en
dc.description.abstractThe geomagnetic field is chaotic and can be characterized by a mean exponential time scale<t>after which it is no longer predictable. It is also ergodic, so time analyses can substitute the more difficult phase space analyses. Taking advantage of these two properties of the Earth’s magnetic field, a scheme of processing global geomagnetic models in time is presented, to estimate fluctuations of the time scale t. Here considering that the capability to predict the geomagnetic field is reduced over periods of geomagnetic jerks, we propose a method to detect these events over a long time span. This approach considers that epochs characterized by relative minima of fluctuations in time scale t, i.e., those periods when a geomagnetic field is less predictable, are possible jerk occurrence dates. We analyze the last 400 years of the geomagnetic field (covered by the Gufm1 model) to detect minima of fluctuations, i.e., epochs characterized by low values of the time scale.Most of the well known jerks are confirmed through this method and a few others have been suggested. Finally, we also identify some short periods when the field is less chaotic (more predictable) than usual, naming these periods as steady state geomagnetic regime, to underline their opposite behavior with respect to jerks.en
dc.language.isoEnglishen
dc.publisher.nameAmerican Geophysical Unionen
dc.relation.ispartofGeochemistry, Geophysics, Geosystemsen
dc.relation.ispartofseries/ 14 (2013)en
dc.subjectgeomagnetic fielden
dc.subjectgeomagnetic jerksen
dc.subjectergodicityen
dc.subjectchaosen
dc.titleGeomagnetic jerks as chaotic fluctuations of the Earth’s magnetic fielden
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber839–850en
dc.subject.INGV04. Solid Earth::04.05. Geomagnetism::04.05.02. Geomagnetic field variations and reversalsen
dc.identifier.doi10.1029/2012GC004398en
dc.relation.referencesAlexandrescu, M., V. Courtillot, and J.L. Le Mouël (1996a), Geomagnetic field direction in Paris since the mid-XVIth century, Phys. Earth Planet. Int., 98, 321–360. Alexandrescu, M., D. Gibert, G. Hulot, J.L. Le Mouël, and G. Saracco (1996b), Worldwide wavelet analysis of geomagnetic jerks, J. Geophys. Res., 101, 21975–21994. Alexandrescu, M., V. Courtillot, and J.L. Le Mouël (1997), High-resolution secular variation of the geomagnetic field in Western Europe over the last 4 centuries: Comparison and integration of historical data from Paris and London, J. Geophys. Res., 102, 20245–20258. Alexandrescu Mandea, M., D. Gibert, J. L. Le Mouël, G. Hulot, and G. Saracco (1999), An estimate of average lower mantle conductivity by wavelet analysis of geomagnetic jerks, J. Geophys. Res., 104, 17735–17745. Alldredge, L.R. (1984), A discussion of impulses and jerks in the geomagnetic field, J. Geophys. Res., 89, 4403–4412. Barraclough, D. (1995), Observations of the Earth’s magnetic field in Edinburgh, from 1670 to the present day, Trans. R. Soc. Edinb. Earth Sci., 85, 239–252. Barraclough, D.R., and A. De Santis (1997), Some possible evidence for a chaotic geomagnetic field from observational data, Phys. Earth Planet. Int., 99, 207–220. Bellanger, E., D. Gibert, and J. Le Mouel (2002), A geomagnetic triggering of Chandler wobble phase jumps?, Geophys. Res. Lett., 29 (7), 1124, doi:10.1029/2001GL014253. Bloxham, J., S. Zatman, and M. Dumberry (2002), The origin of geomagnetic jerks, Nature, 420 (6911), 65–68, 2002. Braginskiy, S. I. (1970), Torsional magnetohydrodynamic vibrations in the Earth’s core and variations in day length, Geomag. Aeron., 10, 1–10. Buffett, B. A., J. Mound, and A. Jackson (2009), Inversion of torsional oscillations for the structure and dynamics of Earth’s core, Geophys. J. Int., 177, 878‐890. Cafarella, L., A. De Santis, and A. Meloni (1992), Secular variation in Italy from historical geomagnetic field measurements, Phys. Earth Planet. Inter., 73, 206‐221. Chambodut, A., and M. Mandea (2005), Evidence for geomagnetic jerks in comprehensive models, Earth Planets Space, 57, 139–149. Chulliat, A., E. Thébault, and G. Hulot (2010), Core field acceleration pulse as a common cause of the 2003 and 2007 geomagnetic jerks, Geophys. Res. Lett., 37, L07301, doi:10.1029/2009GL042019. Courtillot, V., J. Ducruix, and J.L. LeMouël (1978), Sur une accélération récente de la variation séculaire du champ magnétique terrestre, C. R. Acad. Sci. ParisSer. D, 287, 1095‐1098. De Santis, A., and E. Qamili (2010), Shannon information of the geomagnetic field for the past 7000 years, Nonlinear Proc. Geoph., 17, 77–84. De Santis, A., D. R. Barraclough, and R. Tozzi (2002), Nonlinear variability of the Recent Geomagnetic Field, Fractals, 10, 297–303. De Santis, A., R. Tozzi, and L. R. Gaya-Piquè (2004), Information content and K-Entropy of the present geomagnetic field, Earth Planet. Science Lett., 218, 269–275. De Santis, A., E. Qamili, and G. Cianchini (2011), Ergodicity of the recent geomagnetic field, Phys. Earth Plan. Int., 186, 103–110. Duka, B., A. De Santis, M. Mandea. A. Isac, and E. Qamili (2012), Geomagnetic jerks characterization via spectral analysis, Solid Earth, 3, 131–148. Eckmann, J.P. and D. Ruelle (1985). Ergodic Theory of chaos and strange attractors, Rev. Mod. Phys., 57 No.3 Part I, 617–656. Finlay, C. C., et al. (2010), International Geomagnetic Reference Field: The eleventh generation, Geophys. J. Int., 183, 1216–1230, doi:10.1111/j.1365-246X.2010.04804.x. Gibert, D., M. Holschneider, and J.L. Le Mouël (1998), Wavelet analysis of the Chandler wobble, J. Geophys. Res., 103, 27069–27089. Gillet, N., D. Jault, E. Canet, and A. Fournier (2010), Fast torsional waves and strong magnetic field within the Earth’s core, Nature, 465, 74–77. Holme, R., and O. de Viron (2005), Geomagnetic jerks and a higher solution length-of-day profile for core studies, Geophys. J. Int., 160, 435–440. Jackson, A., A. R. T. Jonkers, and M. R. Walker (2000), Four centuries of geomagnetic secular variation from historical records, Phil. Trans. R. Soc. Lond. A, 358, 957–990. Jackson, A., and C. C. Finlay (2007), Geomagnetic Secular Variation and Its Applications to the Core, in Treatise on Geophysics, vol. 5, edited by M. Kono and G. Schubert, pp. 147–193, Elsevier, New York. Jault, D., C. Gire, and J.L. Le Mouël (1988),Westward drift, core motions and exchanges of angular momentum between core and mantle, Nature, 333 (6171), 353–356. Korte, M., M. Mandea, and J. Matzka (2009), A historical declination curve for Munich from different data sources, Phys. Earth Planet. Inter., 174, 161–172. Le Huy, M., M. Alexandrescu, G. Hulot, and J. L. Le Mouël (1998), On the characteristics of successive geomagnetic jerks, Earth Planets Space, 50, 723–732. Lesur, V., and I. Wardinski (2009), Comment on “Can coresurface flow models be used to improve the forecast of the Earth’s main magnetic field?” by Stefan Maus, Luis Silva, and Gauthier Hulot, J. Geophys. Res., 114, B04104, doi: 10.1029/2008JB006188. Macmillan, S. (2007), Geomagnetic jerks, in Encyclopedia of geomagnetism and paleomagnetism, pp. 319–320, eds Gubbins, D. & Herrero-Bervera, E., Springer, Dordrecht. Malin, S. R. C., and E. Bullard (1981), The direction of the Earth’s magnetic field at London, 1570–1975, Philos. Trans. R. Soc. Lond., 299, 357–423. Malin, S. R. C., and M. Hodder (1982), Was the 1970 geomagnetic jerk of internal or external origin? Nature, 296, 726–728. Mandea, M., and N, Olsen (2009), Geomagnetic and archeomagnetic jerks: where do we stand?, Eos Trans. AGU, 90 (24), 208, doi:10.1029/2009EO240004. Mandea, M., E. Bellanger, and J. L. Le Mouël (2000), A geomagnetic jerk for the end of the 20th century?, Earth PlanetSci. Lett., 183, 369–373. Mandea,M., R. Holme, A. Pais, K. Pinheiro, A. Jackson, and G. Verbanac (2010), Geomagnetic Jerks: Rapid Core Field Variations and Core Dynamics, Space Sci Rev., 155, 147–175. Maus, S., L. Silva, and G. Hulot (2008), Can core-surface flow models be used to improve the forecast of the Earth’s main magnetic field?, J. Geophys. Res., 113, B08102, doi: 10.1029/2007JB005199. Nagao, H., T. Iyemori, T. Higuchi, and T. Araki (2003), Lower mantle conductivity anomalies estimated from geomagnetic jerks, J. Geophys. Res., 108, B5, 2254, doi:10.1029/ 2002JB001786. Olsen, N., and M. Mandea (2007), Investigation of a secular variation impulse using satellite data: The 2003 geomagnetic jerk, Earth Planet. Sci. Lett., 255, 94–105, doi:10.1016/j. epsl.2006.12.008. Olsen, N., and M. Mandea (2008), Rapidly changing flows in the Earth’s core, Nat. Geosci., 1, 390–394. Pinheiro, K., and A. Jackson (2008), Can a 1-D mantle electrical conductivity model generate magnetic jerk differential time delays?, Geophys. J. Int., 173, 781–792. Pinheiro, K. J., A. Jackson, and C. C. Finlay (2011), Measurements and uncertainties of the occurrence time of the 1969, 1978, 1991 and 1999 geomagnetic jerks, Geochem. Geophys. Geosyst., 12, Q10015, doi:10.1029/2011GC003706. Schuster, H.G., and W. Just (2005), Deterministic Chaos: an introduction (4th ed.), Wiley-VCH, Weinheim, pp. 287. Soare, A., G. Cucu, and M. Mandea-Alexandrescu (1998), Historical geomagnetic measurements in Romania, Ann. Geofis., 41, 539–554. Sugihara, G., and R. M. May (1990), Nonlinear forecasting as a way of distinguish chaos from measurement error in time series, Nature, 344, 734–741. Takens, F. (1981), Detecting strange attractors in turbulence. In: Rand, D.A., Young, L.S., (Editors), Lecture notes in mathematics, 898, Springer, Berlin, pp. 366. Waddington, R., D. Gubbins, and N. Barber (1995), Geomagnetic- field analysis 5. Determining steady core-surface flows directly from geomagnetic observations, Geophys. J. Int., 122, 326–350. Wales, D.J. (1991), Calculating the rate of loss information from chaotic time series by forecasting, Nature, 350, 485–488. Wardinski, I., R. Holme, S. Asari, and M. Mandea (2008), The 2003 geomagnetic jerk and its relation to the core surface flows, Earth Planet. Sci. Lett., 267, 468–481.en
dc.description.obiettivoSpecifico3.4. Geomagnetismoen
dc.description.journalTypeJCR Journalen
dc.description.fulltextrestricteden
dc.relation.eissn1525-2027en
dc.contributor.authorQamili, E.en
dc.contributor.authorDe Santis, A.en
dc.contributor.authorIsac, A.en
dc.contributor.authorMandea, M.en
dc.contributor.authorDuka, B.en
dc.contributor.authorSimonyan, A.en
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
dc.contributor.departmentGeological Institute of Romania, Bucharest, Romaniaen
dc.contributor.departmentCentre National d’Etudes Spatiales, Paris, Franceen
dc.contributor.departmentFaculty of Natural Sciences, University of Tirana, Tirana, Albaniaen
dc.contributor.departmentInstitute of Geophysics, Academy of Science, Yerevan, Armeniaen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma2, Roma, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma2, Roma, Italia-
crisitem.author.deptGeological Institute of Romania, Bucharest, Romania-
crisitem.author.deptInstitut de Physique du Globe de Paris-IPGP, Université Paris-Diderot & CNRS, 5 rue Thomas Mann,75205 Paris, France-
crisitem.author.deptDepartment of Physics, Faculty of Natural Sciences, University of Tirana, Albania-
crisitem.author.deptInstitute of Geophysics, Academy of Science, Yerevan, Armenia-
crisitem.author.orcid0000-0002-3941-656X-
crisitem.author.orcid0000-0002-2014-1316-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
Qamili etal_G-Cubed_2013.pdf552.93 kBAdobe PDF
Show simple item record

WEB OF SCIENCETM
Citations

11
checked on Feb 10, 2021

Page view(s) 20

289
checked on Mar 27, 2024

Download(s)

39
checked on Mar 27, 2024

Google ScholarTM

Check

Altmetric