Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/8670
DC FieldValueLanguage
dc.contributor.authorallCrampin, S.; British Geological Survey, Edinburgh, Scotland, UKen
dc.contributor.authorallGao, Y.; Institute of Earthquake Science, China Earthquake Administration, Beijing, Chinaen
dc.contributor.authorallDe Santis, A.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
dc.date.accessioned2013-04-23T13:37:59Zen
dc.date.available2013-04-23T13:37:59Zen
dc.date.issued2013-01-30en
dc.identifier.urihttp://hdl.handle.net/2122/8670en
dc.description.abstractSeveral fundamental questions (conundrums) about earthquakes and rocks are inexplicable in terms of conventional sub-critical geophysics. These questions have become so familiar that they are now generally accepted as the way earthquakes and rocks behave and are not recognised as presenting conceptual difficulties. These conundrums are resolved by a new understanding of fluid-rock deformation, where fluid-saturated microcracks in almost all rocks are so closely-spaced they verge on failure and hence are highly-compliant critical-systems which impose a range of new properties on conventional sub-critical geophysics. This new understanding of fluid-rock deformation, this New Geophysics, allows earthquakes to be stress-forecast, and has implications and applications to many solid Earth developments.en
dc.language.isoEnglishen
dc.publisher.nameElsevier Science Limiteden
dc.relation.ispartofJournal of Asian earth sciencesen
dc.relation.ispartofseries/ 62 (2013)en
dc.subjectConundrums resolveden
dc.subjectMonitoring stress changesen
dc.subjectSeismic anisotropyen
dc.subjectShear-wave splittingen
dc.subjectStress-accumulationen
dc.subjectStress-relaxationen
dc.titleA few earthquake conundrums resolveden
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber501–509en
dc.subject.INGV04. Solid Earth::04.06. Seismology::04.06.99. General or miscellaneousen
dc.subject.INGV04. Solid Earth::04.06. Seismology::04.06.03. Earthquake source and dynamicsen
dc.identifier.doi10.1016/j.jseaes.2012.10.036en
dc.relation.referencesAllmann, B.P., Shearer, P.M., 2009. Global variations of stress drop from moderate to large earthquakes. Journal of Geophysical Research 114, B01310. http:// dx.doi.org/10.1029/2008JB005821. Angerer, E., Crampin, S., Li, X.-Y., Davis, T.L., 2002. Processing, modelling, and predicting time-lapse effects of overpressured fluid-injection in a fractured reservoir. Geophysical Journal International 149, 267–280. Baltay, A., Ide, S., Prieto, G., Beroza, G., 2011. Variability in earthquake stress drop and apparent stress. Geophysical Research Letters 38, L06303. http://dx.doi.org/ 10.1029/2011GL046698. Ben-Zion, Y., Lyakhovsky, V., 2002. Accelerated seismic release and related aspects of seismicity patterns on earthquake faults. Pure and Applied Geophysics 159, 2385–2412. Ben-Zion, Y., Sammis, C.G., 2003. Characterisation of fault zones. Pure and Applied Geophysics 160, 677–715. Booth, D.C., Crampin, S., 1985. Shear-wave polarizations on a curved wavefront at an isotropic free-surface. Geophysical Journal of the Royal Astronomical Society 83, 31–45. Booth, D.C., Crampin, S., Lovell, J.H., Chiu, J.-M., 1990. Temporal changes in shear wave splitting during an earthquake swarm in Arkansas. Journal of Geophysical Research 95, 11,151–11,164. Bowman, D.D., King, G.C.P., 2001. Accelerating seismicity and stress accumulation before large earthquakes. Geophysical Research Letters 28, 4039–4042. Bowman, D.D., Sammis, C.G., 2004. Intermittent criticality and the Gutenberg– Richter distribution. Pure and Applied Geophysics 161, 1945–1956. Bowman, D.D., Ouillon, G., Sammis, C.G., Sornette, A., Sornettte, D., 1998. An observational test of the critical earthquake concept. Journal of Geophysical Research 103, 24,359–24,372. Bufe, C.G., Varnes, D.J., 1993. Predictive modelling of the seismic cycle of the greater San Francisco bay region. Journal of Geophysical Research 98, 9871–9883. Crampin, S., 1993. A review of the effects of crack geometry on wave propagation through aligned cracks. Canadian Journal of Exploration Geophysics 29, 3–17. Crampin, S., 1994. The fracture criticality of crustal rocks. Geophysical Journal International 118, 428–438. Crampin, S., 1999. Calculable fluid-rock interactions. Journal of the Geological Society 156, 501–514. Crampin, S., 2001. Developing stress-monitoring sites using cross-hole seismology to stress-forecast the times and magnitudes of future earthquakes. Tectonophysics 338, 233–245, Note updated geometry in online version. Crampin, S., 2003. The New Geophysics: shear-wave splitting provides a window into the crack-critical rock mass. Leading Edge 22, 536–549. Crampin, S., 2004. The New Geophysics: implications for hydrocarbon recovery and possible contamination of time-lapse seismics. First Break 22, 73–82. Crampin, S., 2006. The New Geophysics: a new understanding of fluid-rock deformation. In: Van Cotthem, A., Charlier, R., Thimus, J.-F., Tshibangu, J.-P. (Eds.), Eurock 2006: Multiphysics Coupling and Long Term Behaviour in Rock Mechanics. Taylor and Francis, London, pp. 539–544. Crampin, S., 2011. A second opinion on ‘‘Operational earthquake forecasting: some thoughts on why and how’’, by Thomas H. Jordan and Lucile M. Jones. Seismological Research Letters 82, 227–230. Crampin, S., 2012a. Comment on the report ‘‘Operational Earthquake Forecasting’’ by the International Commission on Earthquake Forecasting for Civil Protection. Annals of Geophysics 55, 5–11, doi:10.401/ag-5516. Crampin, S., 2012b. Misunderstandings in Comments and Replies about the ICEF Report. Available from: <www.geos.ed.ac.uk/homes/scrampin/opinion>. Crampin, S., Chastin, S., 2001. Shear-Wave Splitting in a Critical Crust: II – Compliant, Calculable, Controllable Fluid–Rock Interactions, in Anisotropy 2000: Fractures, Converted Waves, and Case Studies, Society of Exploration Geophysics Open File Publication No. 6, 21-48; also in 2000, Society of Exploration Geophysics online, <http://9iwsa.seg.org/proceedings/toc.html>. Crampin, S., Chastin, S., 2003. A review of shear-wave splitting in the crack-critical crust. Geophysical Journal International 155, 221–240. Crampin, S., Gao, Y., 2005. Comment on ‘‘Systematic Analysis of Shear-Wave Splitting in the Aftershock Zone of the 1999 Chi-Chi, Taiwan, Earthquake: Shallow Crustal Anisotropy and Lack of Precursory Changes’’, by Liu, Teng, Ben- Zion: Temporal Variations Confirmed. Bulletin of the Seismological Society of America 95, 354–360. Crampin, S., Gao, Y., 2008. A review of the New Geophysics: a new understanding of pre-fracturing deformation in the crack-critical crust with implications for hydrocarbon production. Petroleum Science 5, 1–12. Crampin, S., Gao, Y., 2012. Plate-wide deformation before the Sumatra–Andaman Earthquake. Journal of Asian Earth Science 46, 61–69. http://dx.doi.org/10.1016/ j.jseaes.2011.1015. Crampin, S., Peacock, S., 2005. A review of shear-wave splitting in the compliant crack-critical anisotropic Earth. Wave Motion 41, 59–77. Crampin, S., Peacock, S., 2008. A review of the current understanding of shear-wave splitting and common fallacies in interpretation. Wave Motion 45, 675– 722. Crampin, S., Zatsepin, S.V., 1997. Modelling the compliance of crustal rock: II – response to temporal changes before earthquakes. Geophysical Journal International 129, 495–506. Crampin, S., Booth, D.C., Evans, R., Peacock, S., Fletcher, J.B., 1990. Changes in shear wave splitting at Anza near the time of the North Palm Springs Earthquake. Journal of Geophysical Research 95, 11,197–11,212. Crampin, S., Booth, D.C., Evans, R., Peacock, S., Fletcher, J.B., 1991. Comment on ‘‘Quantitative Measurements of Shear Wave Polarizations at the Anza Seismic Network, Southern California: Implications for Shear Wave Splitting and Earthquake Prediction’’ by R.C. Aster, P.M. Shearer, J. Berger. Journal of Geophysical Research 96, 6403–6414. Crampin, S., Volti, T., Stefánsson, R., 1999. A successfully stress-forecast earthquake. Geophysical Journal International 138, F1–F5. Crampin, S., Volti, T., Chastin, S., Gudmundsson, A., Stefánsson, R., 2002. Indication of high pore-fluid pressures in a seismically-active fault zone. Geophysical Journal International 151, F1–F5. Crampin, S., Chastin, S., Gao, Y., 2003. Shear-wave splitting in a critical crust: III – preliminary report of multi-variable measurements in active tectonics. Journal of Applied Geophysics 54, 265–277 (Special Issue). Crampin, S., Peacock, S., Gao, Y., Chastin, S., 2004. The scatter of time-delays in shear-wave splitting above small earthquakes. Geophysical Journal 56, 39– 44. Crampin, S., Gao, Y., Peacock, S., 2008. Stress-forecasting (not predicting) earthquakes: a paradigm shift? Geology 36, 427–430. Davies, P., 1989. The New Physics: a synthesis. In: Davies, P. (Ed.), The New Physics. Cambridge University Press, pp. 1–6. De Santis, A., Cianchini, G., Qamili, E., Frepoli, A., 2010. The 2009 L’Aquila (Central Italy) seismic sequence as a chaotic process. Tectonophysics 496, 44–52. De Santis, A., Cianchini, G., Beranzoli, L., Favali, P., Boschi, E., 2011. The Gutenberg– Richter Law and entropy of earthquakes: two case studies in Central Italy. Bulletin of the Seismological Society of America 101, 1386–1395. Di Toro, G. et al., 2011. Fault lubrication during earthquakes. Nature 471. http:// dx.doi.org/10.1038/nature09838. Gao, Y., Crampin, S., 2003. Temporal variation of shear-wave splitting in field and laboratory in China. Journal of Applied Geophysics 54, 279–287 (Special Issue). Gao, Y., Crampin, S., 2004. Observations of stress relaxation before earthquakes. Geophysical Journal International 157, 578–582. Gao, Y., Crampin, S., 2008. Shear-wave splitting and earthquake forecasting. Terra Nova 20, 440–448. Gutenberg, B., Richter, C.F., 1954. Frequency of earthquakes in California. Bulletin of the Seismological Society of America 34, 185–188. Jaumé, S.C., Sykes, L.R., 1996. Evolution of moderate seismicity in the San Francisco Bay region, 1850 to 1993: Seismicity changes related to the occurrence of large and great earthquakes. Journal of Geophysical Research 101, 765–789. Jaumé, S.C., Sykes, L.R., 1999. Evolving towards a critical point: a review of accelerating seismic moment/energy release prior to large and great earthquakes. Pure and Applied Geophysics 155, 279–306. Jordan, T.H., Jones, L.M., 2010. Operational earthquake forecasting: some thoughts on why and how. Seismological Research Letters 81, 571–574. Jordan, T.H., Jones, L.M., 2011. Reply to ‘A second opinion on ‘‘Operational earthquake forecasting: Some thoughts on why and how’’, by Thomas H. Jordan and Lucile M. Jones’, by Stuart Crampin. Seismological Research Letters 82, 231–232. Jordan, T.H., Chen, Y.-T., Gasparini, P., Madariaga, R., Main, I., Marzocchi, G., Papadopoulos, G., Sobelev, G., Yamaoka, K., Zschau, J., 2011. Operational earthquake forecasting: State of knowledge and guidelines for implementation. Findings and recommendations of the International Commission on Earthquake Forecasting for Civil Protection. Annals of Geophysics 54, 315–391, doi:10. 4401/ag-5350. Jordan, T.H. et al., 2012. Reply to ‘‘Comment on ‘Operational earthquake forecasting: Status of knowledge and guidelines of implementation by Jordan et al. [2011]’ by Stuart Crampin. Annals of Geophysics 55, 13–15, doi: 10. 4401/ag-5690. King, G.C.P., Cocco, M., 2001. Fault interaction by elastic stress changes: new clues from earthquake sequences. Advances in Geophysics 44, 1–38. King, G.C.P., Sammis, C.G., 1992. The mechanisms of finite brittle strain. Pure and Applied Geophysics 138, 548–611. Lorenz, E.N., 1972. Predictability: Does the Flap of a Butterfly’s Wings in Brazil Set off a Tornado in Texas? American Association for the Advancement of Science, Washington, DC. Ma, S., 1976. Modern theory of critical phenomena. Frontiers in, Physics (Benjamin– Cummings). Main, I.G., Sammonds, P.R., Meredith, P.G., 1993. Application of a modified Griffith criterion to the evaluation of fractal damage during compressional rock failure. Geophysical Journal International 115, 367–380. Peacock, S., Crampin, S., Booth, D.C., Fletcher, J.B., 1988. Shear-wave splitting in the Anza seismic gap, Southern California: temporal variations as possible precursors. Journal of Geophysical Research 93, 3339–3356. Sammis, C.G., Smith, S.W., 1999. Seismic cycle and the evolution of stress correlation in cellular automaton models of finite fault networks. Pure and Applied Geophysics 155, 307–334. Savage, H.M., Brodsky, E.E., 2011. Collateral damage: evolution with displacement of fracture distribution and secondary fault streams in fault damage zones. Journal of Geophysical Research 116, B03405. http://dx.doi.org/10.1029/ 2010JB007665. Steacy, S.J., Sammis, C.G., 1991. An automaton for fractal patterns of fragmentation. Nature 353, 250–252. Suwa, Y., Miura, S., Hasegawa, A., Sato, T., Tachibana, K., 2006. Interplate coupling beneath NE Japan inferred from three-dimensional displacement field. Journal of Geophysical Research 111, B04402. http://dx.doi.org/10.1029/2004JB003203. Volti, T., Crampin, S., 2003. A four-year study of shear-wave splitting in Iceland: 2. Temporal changes before earthquakes and volcanic eruptions, In: Nieuwland, D.A. (Ed.), New insights into structural interpretation and modelling. Geological Society, London, Special Publication 212, pp. 135–149. Wu, J., Crampin, S., Gao, Y., Hao, P., Volti, T., Chen, Y.-T., 2006. Smaller source earthquakes and improved measuring techniques allow the largest earthquakes in Iceland to be stress-forecast (with hindsight). Geophysical Journal International 166, 1293–1298. Zatsepin, S.V., Crampin, S., 1997. Modelling the compliance of crustal rock: I – response of shear-wave splitting to differential stress. Geophysical Journal International 129, 477–494.en
dc.description.obiettivoSpecifico3.1. Fisica dei terremotien
dc.description.journalTypeJCR Journalen
dc.description.fulltextrestricteden
dc.relation.issn1367-9120en
dc.relation.eissn1878-5786en
dc.contributor.authorCrampin, S.en
dc.contributor.authorGao, Y.en
dc.contributor.authorDe Santis, A.en
dc.contributor.departmentBritish Geological Survey, Edinburgh, Scotland, UKen
dc.contributor.departmentInstitute of Earthquake Science, China Earthquake Administration, Beijing, Chinaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptSchool of GeoSciences, University of Edinburgh, Edinburgh, Scotland UK; also at Edinburgh Anisotropy Project, British Geological Survey, Edinburgh, Scotland UK-
crisitem.author.deptInstitute of Earthquake Science, China Earthquake Administration, Beijing, China-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma2, Roma, Italia-
crisitem.author.orcid0000-0002-3941-656X-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
Crampin_etal.(2013).pdf737.16 kBAdobe PDF
Show simple item record

WEB OF SCIENCETM
Citations 10

9
checked on Feb 10, 2021

Page view(s) 20

302
checked on Mar 27, 2024

Download(s)

34
checked on Mar 27, 2024

Google ScholarTM

Check

Altmetric