Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/8612
DC FieldValueLanguage
dc.contributor.authorallRey, A.; Museo Nacional de Ciencias Naturales (MNCN), Spanish National Research Council (CSIC), Madrid, Spain.en
dc.contributor.authorallEtiope, G.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
dc.contributor.authorallBelelli-Marchesini, L.; Dipartimento per l’Innovazione nei Sistemi Biologici, Agroalimentari e Forestali (DIBAF), University of Tuscia, Viterbo, Italy.en
dc.contributor.authorallPapale, D.; Dipartimento per l’Innovazione nei Sistemi Biologici, Agroalimentari e Forestali (DIBAF), University of Tuscia, Viterbo, Italy.en
dc.contributor.authorallValentini, R.; Dipartimento per l’Innovazione nei Sistemi Biologici, Agroalimentari e Forestali (DIBAF), University of Tuscia, Viterbo, Italy.en
dc.date.accessioned2013-04-12T07:04:39Zen
dc.date.available2013-04-12T07:04:39Zen
dc.date.issued2012-09-27en
dc.identifier.urihttp://hdl.handle.net/2122/8612en
dc.description.abstractAt a semiarid steppe site located in the SE of Spain, relatively large CO2 emissions were measured that could not be attributed to the ecosystem activity alone. Since the study site was located in a tectonically active area, it was hypothesized that a part of the measured CO2 was of geologic origin. This investigation included a survey of soil CO2 efflux, together with carbon isotope analyses of the CO2 in the soil atmosphere, soil CO2 efflux (i.e., Keeling plots), groundwater and local thermal springs. These measurements confirmed the hypothesis of degassing from geologic sources. In areas with local faults and ancient volcanic structures, soil CO2 efflux rates were significantly higher (i.e., up to 6.3 and 1.4 mmol CO2 m 2 s 1) than measurements in a comparable site that was some distance from fault sites (means of 1.0 and 0.43 mmol CO2 m 2 s 1 in March and June, respectively). The CO2 concentration in the soil atmosphere at the eddy covariance site reached 0.14% v/v at 0.70 m soil depth with a 13C-enriched isotopic composition (d13C from 10.2‰ to 16.6‰), consistent with the isotopic composition of the soil CO2 efflux estimated by Keeling plots (i.e., 16.6‰). 13C-enriched CO2 also occurred in local aquifers, and there was evidence of degassing from deep crust and mantle at regional scale by the helium isotopic ratio in spring waters located about 30 km (R/Ra: 0.12) and 200 km (R/Ra: 0.95) NW of the eddy covariance site. This study highlights the importance of considering CO2 sources of geologic origin when assessing the net ecosystem carbon balance of sites that may possibly be affected by circulation of such CO2-rich fluids.en
dc.language.isoEnglishen
dc.relation.ispartofJournal of geophysical researchen
dc.relation.ispartofseries/ 117 (2012)en
dc.subjectcarbon dioxideen
dc.subjectsoilen
dc.subjectecosystemsen
dc.titleGeologic carbon sources may confound ecosystem carbon balance estimates: Evidence from a semiarid steppe in the southeast of Spainen
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumberG03034en
dc.subject.INGV04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistryen
dc.identifier.doi10.1029/2012JG001991en
dc.relation.referencesAguirre, J., A. B. Pérez-Muñoz, and I. M. Sánchez-Almazo (2006), Benthic foraminifer assemblages in the lower Pliocene deposits of the Almeria-Níjar Basin (SE Spain), Rev. Española Micropaleontol., 38, 411–428. Amundson, R., L. Stern, T. Baisden, and Y. Wang (1998), The isotopic composition of soil and soil-respired CO2, Geoderma, 82, 83–114, doi:10.1016/ S0016-7061(97)00098-0. Armas, C., Z. Kikvidze, and F. I. Pugnaire (2009), Abiotic conditions, neighbour interactions, and the distribution of Stipa tenacissima in a semiarid mountain range, J. Arid Environ., 73, 1084–1089, doi:10.1016/j.jaridenv. 2009.06.012. Barnes, I., W. P. Irwin, and D. E. White (1978), Global distribution of carbondioxide discharges, and major zones of seismicity, scale 1:40,000,000. Water Resources Invest. WRI 78-39. U.S. Geol. Surv., Washington, DC. Batjes, N. H., and E. M. Bridges (1994), Potential emissions of radiatively active gases from soil to atmosphere with special reference to methane: Development of a global database (WISE), J. Geophys. Res., 99, 16,479–16,489, doi:10.1029/93JD03278. Beer, C., et al. (2010), Terrestrial Gross Carbon Dioxide Uptake: Global Distribution and Covariation with Climate, Science, 329, 834–838, doi:10.1126/science.1184984. Bonan, G. B. (1995), Land–atmosphere CO2 exchange simulated by a land surface process model coupled to an atmospheric general circulation model, J. Geophys. Res., 100, 2817–2831, doi:10.1029/94JD02961. Bond-Lamberty, B., and A. Thomson (2010), A global database of soil respiration data, Biogeosciences, 7, 1915–1926, doi:10.5194/bg-7-1915- 2010. Bowling, D. R., D. E. Pataki, and J. T. Randerson (2008), Carbon isotopes in terrestrial ecosystem pools and CO2 fluxes, New Phytol., 178, 24–40, doi:10.1111/j.1469-8137.2007.02342.x. Bräuer, K., H. Kämpf, G. Strauch, and S. M. Weise (2003), Isotopic evidence (3He/4He, 13CCO2) of fluid-triggered intraplate seismicity, J. Geophys. Res., 108(B2), 2070, doi:10.1029/2002JB002077. Camarda, M., S. De Gregorio, R. Favara, and S. Gurrieri (2007), Evaluation of carbon isotope fractionation of soil CO2 under an advective e diffusive regimen: A tool for computing the isotopic composition of unfractionated deep source, Geochim. Cosmochim. Acta, 71, 3016–3027, doi:10.1016/ j.gca.2007.04.002. Capasso, G., and S. Inguaggiato (1998), A simple method for the determination of dissolved gases in natural waters. An application to thermal waters from Vulcano island, Appl. Geochem., 13, 631–642, doi:10.1016/S0883- 2927(97)00109-1. Carbone, M. S., G. C. Winston, and S. E. Trumbore (2008), Soil respiration in perennial grass and shrub ecosystems: Linking plant and microbial sources with environmental controls on seasonal and diel timescales, J. Geophys. Res., 113, G02022, doi:10.1029/2007JG000611. Cerling, T. E., D. K. Solomon, J. Quade, and J. R. Bowman (1991), On the isotopic composition of carbon in soil carbon dioxide, Geochim. Cosmochim. Acta, 55, 3403–3405, doi:10.1016/0016-7037(91)90498-T. Cerón, J. C., M. Martín-Vallejo, and L. García-Rossell (2000), CO2-rich thermomineral groundwater in the Betic Cordilleras, southeastern Spain: Genesis and tectonic implications, Hydrogeol. J., 8, 209–217, doi:10.1007/ s100400050239. Chiodini, G., F. Frondini, D. M. Kerrick, J. Rogie, F. Parello, L. F. Peruzzi, and A. R. Zanzari (1999), Quantification of deep CO2 fluxes from Central Italy. Examples of carbon balance for regional aquifers and of soil diffuse degassing, Chem. Geol., 159, 205–222, doi:10.1016/S0009-2541(99) 00030-3. Chiodini, G., S. Caliro, C. Cardellini, R. Avino, D. Granieri, and A. Schmidt (2008), Carbon isotopic composition of soil CO2 efflux, a powerful method to discriminate different sources feeding soil CO2 degassing in volcanic-17hydrothermal areas, Earth Planet. Sci. Lett., 274, 372–379, doi:10.1016/j.epsl.2008.07.051. Ciais, P., et al. (2008), Carbon accumulation in European forests, Nat. Geosci., 1, 425–429, doi:10.1038/ngeo233. Conant, R. T., J. M. Klopatek, and C. C. Klopatek (2000), Environmental factors controlling soil respiration in three semiarid ecosystems, Soil Sci. Soc. Am. J., 64, 383–390, doi:10.2136/sssaj2000.641383x. Dörr, H., and K. O. Münich (1987), Annual variations in soil respiration in selected areas of the temperate zone, Tellus, 39B, 114–121, doi:10.1111/ j.1600-0889.1987.tb00276.x. Etiope, G. (1999), Subsoil CO2, and CH4 and their advective transfer from faulted grassland to the atmosphere, J. Geophys. Res., 104, 16,889–16,894, doi:10.1029/1999JD900299. Etiope, G. (2012),Methane uncovered, Nat. Geosci., 5, 373–374, doi:10.1038/ ngeo1483. Etiope, G., and R. W. Klusman (2010), Microseepage in drylands: Flux and implications in the global atmospheric source/sink budget of methane, Global Planet. Change, 72, 265–274, doi:10.1016/j.gloplacha.2010.01. 002. Etiope, G., P. Beneduce, M. Calcara, P. Favalia, F. Frugonia, M. Schiattarell, and G. Smriglio (1999), Structural pattern and CO2–CH4 degassing of Ustica Island, Southern Tyrrhenian basin, J. Volcanol. Geotherm. Res., 88, 291–304, doi:10.1016/S0377-0273(99)00010-4. Etiope, G., K. R. Lassey, R. W. Klusman, and E. Boschi (2008), Reappraisal of the fossil methane budget and related emission from geologic sources, Geophys. Res. Lett., 35, L09307, doi:10.1029/2008GL033623. Etiope, G., R. Nakada, K. Tanaka, and N. Yoshida (2011), Gas seepage from Tokamachi mud volcanoes, onshore Niigata Basin (Japan): Origin, post-genetic alterations and CH4-CO2 fluxes, Appl. Geochem., 26, 348–359, doi:10.1016/j.apgeochem.2010.12.008. Faure, G. (1986), Principles of Isotope Geochemistry, 475 pp., John Wiley, New York. Fernàndez, M., I. Marzán, A. Correia, and E. Ramalho (1998), Heat flow, heat production, and lithospheric thermal regime in the Iberian Peninsula, Tectonophysics, 291, 29–53, doi:10.1016/S0040-1951(98)00029-8. Glatzel, S., and R. Well (2008), Evaluation of septum-capped vials for storage of gas samples during air transport, Environ. Monit. Assess., 136, 307–311, doi:10.1007/s10661-007-9686-2. Grace, J., and P. R. van Gardingen (1997), Sites of naturally elevated carbon dioxide, in Plant Responses to Elevated CO2. Evidence from Natural Springs, edited by A. Raschi et al., pp. 1–6, Cambridge Univ. Press, Cambridge, U. K., doi:10.1017/CBO9780511565236.002. Gregory, R. G., and E. M. Durrance (1985), Helium, carbon dioxide and oxygen soil gases: Small-scale variations over fractured ground, J. Geochem. Explor., 24, 29–49, doi:10.1016/0375-6742(85)90003-2. Hilton, D. R. (1996), The helium and carbon isotope systematics of a continental geothermal system: Results from monitoring studies at Long Valley caldera (California, USA), Chem. Geol., 127, 269–295, doi:10.1016/0009-2541(95)00134-4. Hinkle, M. E. (1990), Factors affecting concentrations of helium and carbon dioxide in soil gases, in Geochemistry of Gaseous Elements and Compounds, edited by E. M. Durrance et al., pp. 421–448, Theophrastus, Athens. Hungate, B. A., E. A. Holland, R. B. Jackson, F. S. Chapin III, H. A. Mooney, and C. B. Field (1997), On the fate of carbon in grasslands under carbon dioxide enrichment, Nature, 388, 576–579, doi:10.1038/ 41550. IUSS Working Group WRB (2006), World reference base for soil resources 2006: A framework for international classification, correlation and communication, World Soil Resour. Rep. 103, 128 pp., Food and Agric. Organ. of the U. N., Rome. Kerrick,D. M. (2001), Present and past non-anthropogenic CO2 degassing from the solid Earth, Rev. Geophys., 39, 565–585, doi:10.1029/2001RG000105. Klusman, R. W. (2005), Baseline studies of surface gas exchange and soilgas composition in preparation for CO2 sequestration research: Teapot Dome, Wyoming, Am. Assoc. Pet. Geol. Bull., 89, 981–1003. Klusman, R. W., J. N. Moore, and M. P. LeRoy (2000), Potential for surface gas flux measurements in exploration and surface evaluation of geothermal resources, Geothermics, 29, 637–670, doi:10.1016/S0375-6505 (00)00036-5. Kowalski, A. S., P. Serrano-Ortiz, I. A. Janssens, S. Sánchez-Moral, S. Cuezva, F. Domingo, A. Were, and L. Alados-Arboledas (2008), Can flux tower research neglect geochemical CO2 exchange?, Agric. For. Meteorol., 148, 1045–1054, doi:10.1016/j.agrformet.2008.02.004. Lasslop, G., M. Reichstein, D. Papale, A. D. Richardson, A. Arneth, A. Barr, P. C. Stoy, and G. Wohlfahrt (2010), Separation of net ecosystem exchange into assimilation and respiration using a light response curve approach: Critical issues and global evaluation, Global Change Biol., 16, 187–208, doi:10.1111/j.1365-2486.2009.02041.x. Law, B. E., et al. (2002), Environmental controls over carbon dioxide and water vapour exchange of terrestrial vegetation, Agric. For. Meteorol., 113, 97–120, doi:10.1016/S0168-1923(02)00104-1. Le Quéré, C., et al. (2009), Trends in the sources and sinks of carbon dioxide, Nat. Geosci., 2, 831–836, doi:10.1038/ngeo689. Lewicki, J. L., and S. L. Brantley (2000), CO2 degassing along the San Andreas fault, Parkfield, California, Geophys. Res. Lett., 27, 5–8, doi:10.1029/1999GL008380. Maestre, F. T., and J. Cortina (2006), Ecosystem structure and soil-surface conditions drive the variability in the foliar d13C and d15N of Stipa tenacissima in semiarid Mediterranean steppes, Ecol. Res., 21, 44–53, doi:10.1007/s11284-005-0091-4. Martín, J. M., J. C. Braga, J. Aguirre, and Á. Puga-Bernabéu (2009), History and evolution of the North-Betic Strait (Prebetic Zone, Betic Cordillera): A narrow, early Tortonian, tidal-dominated, Atlantic–Mediterranean marine passage, Sediment. Geol., 216, 80–90, doi:10.1016/ j.sedgeo.2009.01.005. Mook, W. G., J. C. Bommerson, and W. H. Staverman (1974), Carbon isotope fractionation between bicarbonate and gaseous carbon dioxide, Earth Planet. Sci. Lett., 22, 169–176, doi:10.1016/0012-821X(74) 90078-8. Mörner, N. A., and G. Etiope (2002), Carbon degassing from the lithosphere, Global Planet. Change, 33, 185–203, doi:10.1016/S0921-8181 (02)00070-X. Oldenburg, C. M., J. L. Lewicki, and R. P. Happle (2003), Near-surface monitoring strategies for geologic carbon dioxide storage verification, LBNL Pap. 54089, Lawrence Berkeley Natl. Lab., Berkeley, Calif. Oyonarte, C., A. Rey, J. Medeiros, I. Miralles, and P. Escribano (2012), The use of soil respiration as an ecological indicator in arid ecosystems of the SE of Spain: Spatial variability and controlling factors, Ecol. Indic., 14, 40–49, doi:10.1016/j.ecolind.2011.08.013. Pan, Y., et al. (2011), A large and persistent carbon sink in the world’s forests, Science, 11, 787–791. Pataki, D. E., J. R. Ehleringer, L. B. Flanagan, D. Yakir, D. R. Bowling, C. J. Still, N. Buchmann, J. O. Kaplan, and J. A. Berry (2003), The application and interpretation of Keeling plots in terrestrial carbon cycle research, Global Biogeochem. Cycles, 17(1), 1022, doi:10.1029/ 2001GB001850. Pérez, N. M., S. Nakal, H. Wakita, J. F. Albert-Beltrán, and R. Redondo (1996), Preliminary results on 3He/4He ratios in terrestrial fluids from Iberian Peninsula: Seismotectonics and neotectonic implications, Geogaceta, 20, 830–833. Raich, J. W., and A. Tufekcioglu (2000), Vegetation and soil respiration: Correlations and controls, Biogeochemistry, 48, 71–90, doi:10.1023/ A:1006112000616. Reichstein, M., et al. (2005), On the separation of net ecosystem exchange into assimilation and ecosystem respiration: Review and improved algorithm, Global Change Biol., 11, 1424–1439, doi:10.1111/j.1365-2486. 2005.001002.x. Rey, A., E. Pegoraro, and P. G. Jarvis (2008), Carbon mineralization rates at different soil depths across a network of European forest sites (FORCAST), Eur. J. Soil Sci., 59, 1049–1062, doi:10.1111/j.1365-2389. 2008.01065.x. Rey, A., E. Pegoraro, C. Oyonarte, A. Were, P. Escribano, and J. Raimundo (2011), Impact f land degradation on soil respiration in a steppe ecosystem in the SE of Spain, Soil Biol. Biochem., 43, 393–403, doi:10.1016/ j.soilbio.2010.11.007. Rey, A., L. Belelli-Marchesini, A. Were, P. Serrano, G. Etiope, D. Papale, F. Domingo, and E. Pegoraro (2012), Wind as the main driver of net ecosystem carbon balance of a semiarid steppe ecosystem in the SE of Spain, Global Change Biol., 18, 539–554, doi:10.1111/j.1365-2486. 2011.02534.x. Sano, Y., and B. Marty (1995), Origin of carbon in fumarolic gas from island arc, Chem. Geol., 119, 265–274, doi:10.1016/0009-2541(94)00097-R. Sano, Y., and H. Wakita (1988), Precise Measurement of Helium-Isotopes in Terrestrial Gases, Bull. Chem. Soc. Jpn., 61, 1153–1157, doi:10.1246/ bcsj.61.1153. Sanz de Galdeano, C. (1990), Geologic evolution of the Betic Cordilleras in the western Mediterranean, Miocene to the present, Tectonophysics, 172, 107–119, doi:10.1016/0040-1951(90)90062-D. Sanz de Galdeano, C., C. López-Casado, J. Delgado, and M. A. Peinado (1995), Shallow seismicity and active faults in the Betic Cordillera. A preliminary approach to seismic sources associated with specific faults, Tectonophys., 248, 293–302, doi:10.1016/0040-1951(94)00279-I. Serrano-Ortiz, P., F. Domingo, A. Cazorla, A. Were, S. Cuerva, L. Villagarcía, L. Alados-Arboledas, and A. S. Kowalski (2009), Interannual CO2 exchange of a sparse Mediterranean shrubland on a carbonaceous substrate, J. Geophys. Res., 114, G04015, doi:10.1029/2009JG000983. Takahashi, Y., and N. Liang (2007), Development of chamber-based sampling technique for determination of carbon stable isotope ratio of soil respired CO2 and evaluation of influence of CO2 enrichment in chamber headspace, Geochem. J., 41, 493–500, doi:10.2343/geochemj.41.493. U.S. Environmental Protection Agency (EPA) (2010), Methane and nitrous oxide emissions from natural sources, EPA Rep. 430-R-10-001, Off. of Atmos. Programs, Washington, D. C. U.S. Environmental Protection Agency (EPA) (2012), Inventory of U.S. greenhouse gas emissions and sinks: 1990–2010, EPA Rep. 430-R-12- 001, Off. of Atmos. Programs, Washington, D. C. Werner, C., and S. Brantley (2003), CO2 emissions from the Yellowstone volcanic system, Geochem. Geophys. Geosyst., 4, 1061, doi:10.1029/ 2002GC000473. Werner, C., and A. Gessler (2011), Diel variations in the carbon isotope composition of respired CO2 and associated carbon sources: A review of dynamics and mechanisms, Biogeosciences, 8, 2437–2459, doi:10.5194/ bg-8-2437-2011. Williams-Jones, G., J. Stix, M. Heiligmann, A. Charland, B. Sherwood, L. N. Arner, G. Garzón, J. Barquero, and E. Fernandez (2000), A model of diffuse degassing at three subduction-related volcanoes, Bull. Volcanol., 62, 130–142, doi:10.1007/s004450000075.en
dc.description.obiettivoSpecifico4.5. Studi sul degassamento naturale e sui gas petroliferien
dc.description.journalTypeJCR Journalen
dc.description.fulltextrestricteden
dc.contributor.authorRey, A.en
dc.contributor.authorEtiope, G.en
dc.contributor.authorBelelli-Marchesini, L.en
dc.contributor.authorPapale, D.en
dc.contributor.authorValentini, R.en
dc.contributor.departmentMuseo Nacional de Ciencias Naturales (MNCN), Spanish National Research Council (CSIC), Madrid, Spain.en
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
dc.contributor.departmentDipartimento per l’Innovazione nei Sistemi Biologici, Agroalimentari e Forestali (DIBAF), University of Tuscia, Viterbo, Italy.en
dc.contributor.departmentDipartimento per l’Innovazione nei Sistemi Biologici, Agroalimentari e Forestali (DIBAF), University of Tuscia, Viterbo, Italy.en
dc.contributor.departmentDipartimento per l’Innovazione nei Sistemi Biologici, Agroalimentari e Forestali (DIBAF), University of Tuscia, Viterbo, Italy.en
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptMuseo Nacional de Ciencias Naturales (MNCN), Spanish National Research Council (CSIC), Madrid, Spain.-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma2, Roma, Italia-
crisitem.author.deptDepartment for Innovation in Biological, Agro-Food and Forest Systems (DIBAF), University of La Tuscia, Viterbo, Italy-
crisitem.author.deptDepartment for Innovation in Biological, Agro-Food and Forest Systems (DIBAF), University of La Tuscia, Viterbo, Italy-
crisitem.author.deptDipartimento per l’Innovazione nei Sistemi Biologici, Agroalimentari e Forestali (DIBAF), University of Tuscia, Viterbo, Italy.-
crisitem.author.orcid0000-0001-8614-4221-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
Rey et al 2012 - JGR.pdf480.67 kBAdobe PDF
Show simple item record

WEB OF SCIENCETM
Citations 50

11
checked on Feb 10, 2021

Page view(s)

97
checked on Apr 20, 2024

Download(s)

27
checked on Apr 20, 2024

Google ScholarTM

Check

Altmetric