Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/8610
Authors: Balassone, G.* 
Scordari, F.* 
Lacalamita, M.* 
Schingaro, M.* 
Mormone, A.* 
Piochi, M.* 
Petti, C.* 
Mondillo, N.* 
Title: Trioctahedral micas in xenolithic ejecta from recent volcanism of the Somma-Vesuvius (Italy): crystal chemistry and genetic inferences.
Journal: Lithos 
Series/Report no.: /160-161(2013)
Publisher: Elsevier Science Limited
Issue Date: 2013
DOI: 10.1016/j.lithos.2012.12.004
Keywords: phlogopite
Crystal chemistry
Vesuvius
petrogenesis
Subject Classification04. Solid Earth::04.01. Earth Interior::04.01.04. Mineral physics and properties of rocks 
04. Solid Earth::04.04. Geology::04.04.05. Mineralogy and petrology 
04. Solid Earth::04.04. Geology::04.04.07. Rock geochemistry 
04. Solid Earth::04.08. Volcanology::04.08.05. Volcanic rocks 
05. General::05.02. Data dissemination::05.02.01. Geochemical data 
Abstract: This study reports the first crystal chemical database resulting from a detailed structural investigation of trioctahedral micas found in xenolithic ejecta produced during the AD 1631, 1872 and 1944 eruptions, three explosive episodes of recent volcanic period of Vesuvius volcano (Southern Italy). Three xenolith types were selected: metamorphic/metasomatic skarns, pyrometamorphic/hydrothermally altered nodules and mafic cumulates. They are related to different magma chemistry and effusive styles: from sub-plinian and most evolved (AD 1631 eruption) to violent strombolian with medium evolution degree (AD 1872 eruption) to vulcanian-effusive, least evolved (AD 1944 eruption) event, respectively. Both xenoliths and micas were investigated employing multiple techniques: the xenoliths were characterized by X-ray fluorescence, inductively-coupled plasma-mass spectrometry, optical microscopy, X-ray powder diffraction, and quantitative energy-dispersive microanalysis; the micas were studied by electron probe microanalysis and single crystal X-ray diffraction. The mica-bearing xenoliths showvariable texture and mineralogical assemblage, clearly related to their different origin. Based on the major oxide chemistry, only one xenolithic sample falls in the skarn compositional field fromthe Somma-Vesuvius literature, some fall close to the skarns and cumulate fields, others plot close to the syenite/foidolite/essexite field. A subgroup of the selected ejecta does not fall or approach any of the compositional fields. Trace and rare earth element patterns show some petrological affinity between studied xenoliths and erupted magmas with typical Eu, Ta and Nb negative anomalies. Strongly depleted patterns were detected for the 1631 metamorphic/metasomatic skarns xenoliths. Three distinct mica groups were distinguished: 1) Mg-, Al-rich, low Ti-bearing, low to moderate F-bearing varieties (1631 xenolith), 2) Al-moderate, F- and Mg-rich, Ti-, Fe-poor varieties (1872 xenolith), and 3) Al-, Ti- and Fe-rich, F-poor phases (1944 xenolith). All the analyzed mica crystals are 1Mpolytypes with the expected space group C2/m. Micas from xenoliths of the 1631 Vesuvius eruption are phlogopites characterized by a combination of low extent of oxy-type and variable extent OH−→F− substitutions, as testified by the range of F concentration (from ~0.20 to 0.80 apfu). Micas from xenoliths of the 1872 Vesuvius eruption exhibit structural peculiarities typical of fluorophlogopites, i.e. OH−→F− substitution is predominant. Micas from the xenolith of the 1944 Vesuvius eruption display features typical of oxy-substituted micas. The variability of the crystal chemical features of the studied micas is consistentwith the remarkable variation of their host rocks. Micas from1631 nodules are related to metasomatic, skarn-type environment, deriving from the metamorphosed wall-rocks hosting the magma reservoir. The fluorophlogopites from the 1872 xenoliths testify for strongly dehydrated environmental conditions compared to those of the 1631 and 1944 hosts. Finally, magma storage condition at depth, associated to a decreasing aH2O may have promoted major oxy-type substitutions in 1944 biotites.
Appears in Collections:Article published / in press

Files in This Item:
File Description SizeFormat Existing users please Login
Balassone et al_LITHOS2013- Bt VS.pdfMain article1.93 MBAdobe PDF
Show full item record

WEB OF SCIENCETM
Citations

7
checked on Feb 10, 2021

Page view(s) 20

321
checked on Apr 17, 2024

Download(s)

51
checked on Apr 17, 2024

Google ScholarTM

Check

Altmetric