Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/8603
DC FieldValueLanguage
dc.contributor.authorallNinfo, A.; Dipartimento di Geoscienze, Università di Padovaen
dc.contributor.authorallZizioli, D.; Università di Pavia, Dipartimento di Scienze della Terra e Ambientali, Pavia, Italyen
dc.contributor.authorallMeisina, C.; Università di Pavia, Dipartimento di Scienze della Terra e Ambientali, Pavia, Italyen
dc.contributor.authorallCastaldini, D.; Università di Modena e Reggio Emilia, Dipartimento di Scienze Chimiche e Geologiche, Modena, Italyen
dc.contributor.authorallZucca, F.; Università di Pavia, Dipartimento di Scienze della Terra e Ambientali, Pavia, Italyen
dc.contributor.authorallLuzi, L.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Milano-Pavia, Milano, Italiaen
dc.contributor.authorallDe Amicis, M.; Università di Milano-Bicocca, Dipartimento di Scienze dell'Ambiente e del Territorio, Milano, Italyen
dc.date.accessioned2013-04-08T10:46:22Zen
dc.date.available2013-04-08T10:46:22Zen
dc.date.issued2012en
dc.identifier.urihttp://hdl.handle.net/2122/8603en
dc.description.abstractSand boils, which are also known as sand blows or sand volcanoes, are among the most common superficial effects induced by high-magnitude earthquakes. These generally occur in or close to alluvial plains when a strong earthquake (M >5) strikes on a lens of saturated and unconsolidated sand deposits that are constrained between silt-clay layers [Ambraseys 1988, Carter and Seed 1988, Galli 2000, Tuttle 2001, Obermeier et al. 2005], where the sediments are converted into a fluid suspension. The liquefaction phenomena requires the presence of saturated and uncompacted sand, and a groundwater table near the ground surface. This geological– geomorphological setting is common and widespread for the Po Plain (Italy) [Castiglioni et al. 1997]. The Po Plain (ca. 46,000 km2) represents 15% of the Italian territory. It hosts a population of about 20 million people (mean density of 450 people/km2) and many infrastructures. Thus, the Po Plain is an area of high vulnerability when considering the liquefaction potential in the case of a strong earthquake. Despite the potential, such phenomena are rarely observed in northern Italy [Cavallin et al. 1977, Galli 2000], because strong earthquakes are not frequent in this region; e.g., historical data report soil liquefaction near Ferrara in 1570 (M 5.3) and in Argenta 1624 (M 5.5) [Prestininzi and Romeo 2000, Galli 2000]. In the Emilia quakes of May 20 and 29, 2012, the most widespread coseismic effects were soil liquefaction and ground cracks, which occurred over wide areas in the Provinces of Modena, Ferrara, Bologna, Reggio Emilia and Mantova (Figure 1). These were the causes of considerable damage to buildings and the infrastructure. The soil liquefaction and ground cracks were accompanied by sand boils, which are described in this report. The spatial distribution and geomorphological setting of sand boils and ground cracks are also described here. A detailed three-dimensional (3D) reconstruction of these features is also presented, which was carried out using terrestrial photogrammetry. Since archeological times, fluvial ridges, and in general sandy deposits on low plains have been the preferred sites for human infrastructure, colonial houses, roads, etc. Therefore, it is very important to understand how the local topography/ morphology interacts in the liquefaction processes. Numerous distinctive seismic landforms were generated by the May 2012 strong earthquakes (seven with M >5), and in particular, sand boils and ground fractures. The sand-boil landforms, also known as sand craters or sand volcanoes, are formed by low mounds of sand that have been extruded from fractures [Tuttle 2001]. The cone is a generally shortlived structure that naturally collapses, starting from the center holes that mark the water retreat back into the fracture. Sand boils also occurred along larger cracks (with decimetric lateral and vertical displacements). Here, the upper scarps block the formation of craters and allow the deposition of a sandy layer several centimeters thick (e.g. ca. 4 cm in the San Carlo crack), on the lower side of the steep slope. These landforms are highly vulnerable to erosion. After a few weeks, they are washed out by rain, destroyed by human activity, or masked by growing crops. Thus, ground surveys that investigate these events have to be carried out as soon as possible [Panizza et al. 1981]. In this report, we present preliminary results using methods to map the detailed micro-morphology of some representative liquefaction features (Figure 2) that normally disappear for the aforementioned reasons, or that are recorded only in qualitative terms.en
dc.language.isoEnglishen
dc.publisher.nameINGVen
dc.relation.ispartofANNALS OF GEOPHYSICSen
dc.relation.ispartofseries4/55 (2012)en
dc.subjectSand boils, Digital elevation model, Liquefactionen
dc.titleThe survey and mapping of sand-boil landforms related to the Emilia 2012 earthquakes: preliminary resultsen
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber727-733en
dc.subject.INGV04. Solid Earth::04.04. Geology::04.04.03. Geomorphologyen
dc.identifier.doi10.4401/ag-6114en
dc.relation.referencesAmbraseys, N.N. (1988). Engineering Seismology, Earthquake Engineering and Structural Dynamics, vol. 17, Elsevier, Amsterdam, 1-105. Balista, C., M. Calzolari, P. Campagnoli, A. Cardarelli, M. Cattani, V. Corazza, C. Corti, S. Gelichi, A. Gianferrari, N. Giordani, D. Labate, L. Malnati, R. Mussati, G. Pellacani, S. Pellegrini, R. Tarpini and C. Zanasi (2003). Atlante dei Beni Archeologici della Provincia di Modena, Vol. I, All' Insegna del Giglio, Firenze. Burrato, P.F., F. Ciucci and G. Valensise (2003). An inventory of river anomalies in the Po Plain, northern Italy: evidence for active blind thrust faulting, Annals of Geophysics, 46 (5), 865-882. Carter, D.P., and H.B. Seed (1988). Liquefaction Potential of Sand Deposits Under Low Levels of Excitation, Report No. UCB/EERC-81/11, College of Engineering, University of California, Berkeley, 1-119. Castaldini, D. (1984). Esempio di studio morfologico e geolitologico in un'area di pianura: il territorio del comune di Quistello (Provincia di Mantova), Atti della Società dei Naturalisti e Matematici di Modena, 115 , 47-76. Castaldini, D., and S. Raimondi (1985). Geomorfologia dell'area di Pianura Padana compresa fra Cento, Finale Emilia e S. Agostino, Atti della Società dei Naturalisti e Matematici di Modena, 116, 147-176.Castaldini, D. (1989a). Evoluzione della rete idrografica centropadana in epoca protostorica e storica, In: Atti del Convegno "Insediamenti e viabilità nell'alto ferrarese dall'Età Romana al Medioevo" (Cento, 8-9 maggio 1987), Accademia delle Scienze di Ferrara, 115-134. Castaldini, D. (1989b). Geomorfologia della bassa Pianura Padana modenese e dei territori limitrofi, In: Mirandola e le valli, immagini e documenti, Tip. Golnelli, Mirandola, 25-37. Castaldini, D., M. Mazzucchelli and V. Pignatti (1992). Geomorfologia e geochimica dei sedimenti del paleoalveo dei Barchessoni (San Martino Spino, bassa pianura modenese), In: M. Calzolari and L. Malnati (eds.), Gli Etruschi nella Bassa Modenese, Gruppo studi Bassa modenese, 207-224. Castaldini, D., M. Marchetti and A. Cardarelli (2009). Geomorphological and archaeological aspects in the central Po Plain (northern Italy), In: M. De Dapper, F. Vermeulen, S. Deprez and D. Taelman (eds.), Ol'man River. Geo-archaeological aspects of rivers and river plains (ARGU 5), Universiteit Gent Academia Press, Belgium, 193- 211. Castiglioni, G.B., et al. (1997). Carta Geomorfologica della Pianura Padana, MURST, 3 fogli, 1:250.000, LAC, Firenze. Castiglioni, G.B., and G.B. Pellegrini (2001). Illustrative Notes of the Geomorphological Map of Po Plain, Supplement to Geogr. Fis. Din. Quat., IV, 1-208. Cavallin, A., B. Martinis and G. Sfrondrini (1977). Effetti geologici del terremoto: fenditure nel terreno e "vulcanelli" di sabbia, In: B. Martinis B. (ed.), Studio geologico dell' area maggiormente colpita dal terremoto friuliano del 1976, Riv. Ital.Paleontol. S., 83, 369-393. Galli, P. (2000). New empirical relationships between magnitude and distance for liquefaction, Tectonophysics, 324, 169-187. Landuzzi, A., R. Nichols and G.B. Vai (1995). Sand volcanoes in the Marnoso-Arenacea formation (Miocene, northern Apennines, Italy): new evidence of paleoseismicity, In: L. Serva and D. Burton Slemmons (eds.), Perspectives in paleosismology, Special Publication n. 6, Association of Engineering Geologists, 49-61. Miller, V.C. (1953). A quantitative geomorphic study of drainage basin characteristics in the Clinch Mountain area, Virginia and Tennessee, Technical Report No.3, Contract N6 ONR 271-300, Columbia University, Department of Geology. Montenat, C., P. Barrier, P.O. d'Estevou and C. Hibsch (2007). Seismites: an attempt at critical analysis and classification, Sediment. Geol., 196, 5-30. Obermeier, S.F. (1996). Use of liquefaction induced features for paleoseismic analysis, Eng. Geol., 44, 1-76. Obermeier, S.F., S.M. Olson and R.A. Green (2005). Field occurrences of liquefaction-induced features: a primer for engineering geologic analysis of paleoseismic shaking,Eng. Geol., 76, 209-234. Panizza, M., G. Bollettinari, A. Carton, D. Castaldini and S. Piacente (1981). Considerazioni sul "pronto intervento" in occasione di un terremoto distruttivo, Rendiconti della Società Geologica Italiana, 4, 707-708. Prestininzi, A., and R.W. Romeo (2000). Earthquake-induced ground failures in Italy, Eng. Geol., 58, 387-397. Schumm, S. (1956). Evolution of drainage systems and slopes in badland at Perth Amboy, New Jersey, Bull. Geol. Soc. Am., 67, 597-646. Szeliski, R. (2011). Computer Vision: Algorithms and Applications, Springer-Verlag, London, 1-812. Toscani, G., P. Burrato, D. Di Bucci, S. Seno and G. Valensise (2009). Plio-Quaternary tectonic evolution of the northern Apennines thrust fronts (Bologna-Ferrara section, Italy): seismotectonic implications, B. Soc. Geol. Ital, 128, 605-613. Tuttle, M.P. (2001). The use of liquefaction features in paleoseismology: lessons learned in the New Madrid seismic zone, central United States, J. Seismol., 5, 361-380. Ullman, S. (1979). The interpretation of structure from motion, Proc. R. Soc. Lond., B.203, 405-426. Verhoeven, G. (2011). Taking computer vision aloft - archaeological three-dimensional reconstructions from aerial photographs with PhotoScan, Archaeol. Prospect., 18, 67-73.en
dc.description.obiettivoSpecifico4.4. Scenari e mitigazione del rischio ambientaleen
dc.description.journalTypeJCR Journalen
dc.description.fulltextopenen
dc.contributor.authorNinfo, A.en
dc.contributor.authorZizioli, D.en
dc.contributor.authorMeisina, C.en
dc.contributor.authorCastaldini, D.en
dc.contributor.authorZucca, F.en
dc.contributor.authorLuzi, L.en
dc.contributor.authorDe Amicis, M.en
dc.contributor.departmentDipartimento di Geoscienze, Università di Padovaen
dc.contributor.departmentUniversità di Pavia, Dipartimento di Scienze della Terra e Ambientali, Pavia, Italyen
dc.contributor.departmentUniversità di Pavia, Dipartimento di Scienze della Terra e Ambientali, Pavia, Italyen
dc.contributor.departmentUniversità di Modena e Reggio Emilia, Dipartimento di Scienze Chimiche e Geologiche, Modena, Italyen
dc.contributor.departmentUniversità di Pavia, Dipartimento di Scienze della Terra e Ambientali, Pavia, Italyen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Milano, Milano, Italiaen
dc.contributor.departmentUniversità di Milano-Bicocca, Dipartimento di Scienze dell'Ambiente e del Territorio, Milano, Italyen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextopen-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptDipartimento di Geoscienze, Università di Padova-
crisitem.author.deptUniversità di Pavia, Dipartimento di Scienze della Terra e Ambientali, Pavia, Italy-
crisitem.author.deptUniversità di Modena e Reggio Emilia, Dipartimento di Scienze Chimiche e Geologiche, Modena, Italy-
crisitem.author.deptUniversità di Pavia - Dip.Scienze della Terra (Pavia, ITALY)-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Milano, Milano, Italia-
crisitem.author.deptUniversità di Milano-Bicocca, Dipartimento di Scienze dell'Ambiente e del Territorio, Milano, Italy-
crisitem.author.orcid0000-0003-3673-3794-
crisitem.author.orcid0000-0002-9973-6215-
crisitem.author.orcid0000-0003-4312-580X-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat
NINFO_bozze.pdfPre-print3.26 MBAdobe PDFView/Open
Show simple item record

WEB OF SCIENCETM
Citations 20

11
checked on Feb 10, 2021

Page view(s)

163
checked on Apr 17, 2024

Download(s) 50

184
checked on Apr 17, 2024

Google ScholarTM

Check

Altmetric